Centre of the Ellipse

We will discuss about the centre of the ellipse along with the examples.

The centre of a conic section is a point which bisects every chord passing through it.


Definition of the centre of the ellipse:

The mid-point of the line-segment joining the vertices of an ellipse is called its centre.

Suppose the equation of the ellipse be \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1 then, from the above figure we observe that C is the mid-point of the line-segment AA', where A and A' are the two vertices. In case of the ellipse \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1, every chord is bisected at C (0, 0).

Therefore, C is the centre of the ellipse and its co-ordinates are (0, 0).

Solved examples to find the centre of an ellipse:

1. Find the co-ordinates of the centre of the ellipse 3x\(^{2}\) + 2y\(^{2}\) - 6 = 0.

Solution:

The given equation of the ellipse is 3x\(^{2}\) + 2y\(^{2}\) - 6 = 0.

Now form the above equation we get,

3x\(^{2}\) + 2y\(^{2}\) - 6 = 0

⇒ 3x\(^{2}\) + 2y\(^{2}\) = 6

Now dividing both sides by 6, we get

\(\frac{x^{2}}{2}\) + \(\frac{y^{2}}{3}\) = 1 ………….. (i)

This equation is of the form \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1 (a\(^{2}\) > b\(^{2}\)).

Clearly, the centre of the ellipse (1) is at the origin.

Therefore, the co-ordinates of the centre of the ellipse 3x\(^{2}\) + 2y\(^{2}\) - 6 = 0 is (0, 0)

 

2. Find the co-ordinates of the centre the ellipse 5x\(^{2}\) + 9y\(^{2}\) - 10x + 90y + 185 = 0.

Solution:    

The given equation of the ellipse is 5x\(^{2}\) + 9y\(^{2}\) - 10x + 90y + 185 = 0.

Now form the above equation we get,

5x\(^{2}\) + 9y\(^{2}\) - 10x + 90y + 185 = 0

⇒ 5x\(^{2}\) - 10x + 5 + 9y\(^{2}\) + 90y + 225 + 185  - 5 - 225 = 0

⇒ 5(x\(^{2}\) - 2x + 1) + 9(y\(^{2}\) + 10y + 25) =  45

\(\frac{(x - 1)^{2}}{9}\) + \(\frac{(y + 5)^{2}}{5}\) = 1

We know that the equation of the ellipse having centre at (α, β) and major and minor axes parallel to x and y-axes respectively is, \(\frac{(x - α)^{2}}{a^{2}}\) + \(\frac{(y - β)^{2}}{b^{2}}\) = 1.

Now, comparing equation \(\frac{(x - 1)^{2}}{9}\) + \(\frac{(y + 5)^{2}}{5}\) = 1 with equation \(\frac{(x - α)^{2}}{a^{2}}\) + \(\frac{(y - β)^{2}}{b^{2}}\) = 1 we get,

α = 1, β = - 5, a\(^{2}\) = 9 ⇒ a = 3 and b\(^{2}\) = 5 ⇒ b = √5.

Therefore, the co-ordinates of its centre are (α, β) i.e., (1, - 5).

● The Ellipse





11 and 12 Grade Math 

From Centre of the Ellipse to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Multiplication by Ten, Hundred and Thousand |Multiply by 10, 100 &1000

    Jan 17, 25 12:34 PM

    Multiply by 10
    To multiply a number by 10, 100, or 1000 we need to count the number of zeroes in the multiplier and write the same number of zeroes to the right of the multiplicand. Rules for the multiplication by 1…

    Read More

  2. Multiplying 2-Digit Numbers by 2-Digit Numbers |Multiplying by 2-Digit

    Jan 17, 25 01:46 AM

    Multiplying 2-Digit Numbers by 2-Digit Numbers
    We will learn how to multiply 2-digit numbers by 2-digit numbers.

    Read More

  3. Multiplying 3-Digit Numbers by 2-Digit Numbers | 3-Digit by 2-Digit

    Jan 17, 25 01:17 AM

    Multiplying 3-Digit Numbers by 2-Digit Numbers
    "We will learn how to multiply 3-digit numbers by 2-digit numbers.

    Read More

  4. 4-Digits by 1-Digit Multiplication |Multiply 4-Digit by 1-Digit Number

    Jan 17, 25 12:01 AM

    4-Digit by 1-Digit Multiply
    Here we will learn 4-digits by 1-digit multiplication. We know how to multiply three digit number by one digit number. In the same way we can multiply 4-digit numbers by 1-digit numbers without regrou…

    Read More

  5. Multiplying 3-Digit Number by 1-Digit Number | Three-Digit Multiplicat

    Jan 15, 25 01:54 PM

    Multiplying 3-Digit Number by 1-Digit Number
    Here we will learn multiplying 3-digit number by 1-digit number. In two different ways we will learn to multiply a two-digit number by a one-digit number. 1. Multiply 201 by 3 Step I: Arrange the numb…

    Read More