We will discuss about the vertex of the ellipse along with the examples.

Definition of the vertex of the ellipse:

The vertex is the point of intersection of the line perpendicular to the directrix which passes through the focus cuts the ellipse.

Suppose the equation of the ellipse be \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1 then, from the above figure we observe that the line perpendicular to the directrix KZ and passing through the focus S cuts the ellipse at A and A'.

The points A and A', where the ellipse meets the line joining the foci S and S' are called the vertices of the ellipse.

Therefore, the ellipse has two vertices A and A' whose co-ordinates are (a, 0) and (- a, 0) respectively.

Solved examples to find the vertex of an ellipse:

**1.** Find the coordinates of the vertices of the ellipse 9x\(^{2}\)
+ 16y\(^{2}\) - 144 = 0.

**Solution:**

The given equation of the ellipse is 9x\(^{2}\) + 16y\(^{2}\) - 144 = 0

Now form the above equation we get,

9x\(^{2}\) + 16y\(^{2}\) = 144

Dividing both sides by 144, we get

\(\frac{x^{2}}{16}\) + \(\frac{y^{2}}{9}\) = 1

This is the form of \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1, (a\(^{2}\) > b\(^{2}\)), where a\(^{2}\) = 16 or a = 4 and b\(^{2}\) = 9 or b = 3

We know the coordinates of the vertices are (a, 0) and (-a, 0).

Therefore, the coordinates of the vertices of the ellipse 9x\(^{2}\) + 16y\(^{2}\) - 144 = 0 are (4, 0) and (-4, 0).

**2.** Find the coordinates of the vertices of the ellipse 9x\(^{2}\)
+ 25y\(^{2}\) - 225 = 0.

**Solution:**

The given equation of the ellipse is 9x\(^{2}\) + 25y\(^{2}\) - 225 = 0

Now form the above equation we get,

9x\(^{2}\) + 25y\(^{2}\) = 225

Dividing both sides by 225, we get

\(\frac{x^{2}}{25}\) + \(\frac{y^{2}}{9}\) = 1

Comparing the equation \(\frac{x^{2}}{25}\) + \(\frac{y^{2}}{9}\) = 1

with the standard equation of ellipse \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1 (a\(^{2}\) > b\(^{2}\)) we get,

a\(^{2}\) = 25 or a = 5 and b\(^{2}\) = 9 or b = 3

We know the coordinates of the vertices are (a, 0) and (-a, 0).

Therefore, the coordinates of the vertices of the ellipse 9x\(^{2}\)
+ 25y\(^{2}\) - 225 = 0 are (5, 0) and (-5, 0).

**● ****The Ellipse**

**Definition of Ellipse****Standard Equation of an Ellipse****Two Foci and Two Directrices of the Ellipse****Vertex of the Ellipse****Centre of the Ellipse****Major and Minor Axes of the Ellipse****Latus Rectum of the Ellipse****Position of a Point with respect to the Ellipse****Ellipse Formulae****Focal Distance of a Point on the Ellipse****Problems on Ellipse**

**11 and 12 Grade Math**__From Vertex of the Ellipse____ to HOME PAGE__

**Didn't find what you were looking for? Or want to know more information
about Math Only Math.
Use this Google Search to find what you need.**

## New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.