Vertex of the Ellipse

We will discuss about the vertex of the ellipse along with the examples.


Definition of the vertex of the ellipse:

The vertex is the point of intersection of the line perpendicular to the directrix which passes through the focus cuts the ellipse.

Suppose the equation of the ellipse be \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1 then, from the above figure we observe that the line perpendicular to the directrix KZ and passing through the focus S cuts the ellipse at A and A'.

The points A and A', where the ellipse meets the line joining the foci S and S' are called the vertices of the ellipse.

Therefore, the ellipse has two vertices A and A' whose co-ordinates are (a, 0) and (- a, 0) respectively.

Solved examples to find the vertex of an ellipse:

1. Find the coordinates of the vertices of the ellipse 9x\(^{2}\) + 16y\(^{2}\) - 144 = 0.

Solution:

The given equation of the ellipse is 9x\(^{2}\) + 16y\(^{2}\) - 144 = 0

Now form the above equation we get,

9x\(^{2}\) + 16y\(^{2}\) = 144

Dividing both sides by 144, we get

\(\frac{x^{2}}{16}\) + \(\frac{y^{2}}{9}\) = 1

This is the form of \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1, (a\(^{2}\) > b\(^{2}\)), where a\(^{2}\) = 16 or a = 4 and b\(^{2}\) = 9 or b = 3

We know the coordinates of the vertices are (a, 0) and (-a, 0).

Therefore, the coordinates of the vertices of the ellipse 9x\(^{2}\) + 16y\(^{2}\) - 144 = 0 are (4, 0) and (-4, 0).

 

2. Find the coordinates of the vertices of the ellipse 9x\(^{2}\) + 25y\(^{2}\) - 225 = 0.

Solution:

The given equation of the ellipse is 9x\(^{2}\) + 25y\(^{2}\) - 225 = 0

Now form the above equation we get,

9x\(^{2}\) + 25y\(^{2}\) = 225

Dividing both sides by 225, we get

\(\frac{x^{2}}{25}\) + \(\frac{y^{2}}{9}\) = 1

Comparing the equation \(\frac{x^{2}}{25}\) + \(\frac{y^{2}}{9}\) = 1

with the standard equation of ellipse \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1 (a\(^{2}\) > b\(^{2}\)) we get,

a\(^{2}\) = 25 or a = 5 and b\(^{2}\) = 9 or b = 3

We know the coordinates of the vertices are (a, 0) and (-a, 0).

Therefore, the coordinates of the vertices of the ellipse 9x\(^{2}\) + 25y\(^{2}\) - 225 = 0 are (5, 0) and (-5, 0).

● The Ellipse





11 and 12 Grade Math 

From Vertex of the Ellipse to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 14, 24 02:12 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  2. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 14, 24 12:25 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More

  3. Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

    Dec 13, 24 08:43 AM

    Complete the Series Patterns
    We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…

    Read More

  4. Patterns in Math | Missing Number | Counting Numbers | Worksheets

    Dec 13, 24 12:31 AM

    Finding patterns in math is very important to understand the sequence in the series. We need to find the exact missing number that from the group of numbers. The counting numbers may be counting

    Read More

  5. Concept of Pattern | Similar Patterns in Mathematics | Similar Pattern

    Dec 12, 24 11:22 PM

    Patterns in Necklace
    Concept of pattern will help us to learn the basic number patterns and table patterns. Animals such as all cows, all lions, all dogs and all other animals have dissimilar features. All mangoes have si…

    Read More