Vertex of the Ellipse

We will discuss about the vertex of the ellipse along with the examples.


Definition of the vertex of the ellipse:

The vertex is the point of intersection of the line perpendicular to the directrix which passes through the focus cuts the ellipse.

Suppose the equation of the ellipse be \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1 then, from the above figure we observe that the line perpendicular to the directrix KZ and passing through the focus S cuts the ellipse at A and A'.

The points A and A', where the ellipse meets the line joining the foci S and S' are called the vertices of the ellipse.

Therefore, the ellipse has two vertices A and A' whose co-ordinates are (a, 0) and (- a, 0) respectively.

Solved examples to find the vertex of an ellipse:

1. Find the coordinates of the vertices of the ellipse 9x\(^{2}\) + 16y\(^{2}\) - 144 = 0.

Solution:

The given equation of the ellipse is 9x\(^{2}\) + 16y\(^{2}\) - 144 = 0

Now form the above equation we get,

9x\(^{2}\) + 16y\(^{2}\) = 144

Dividing both sides by 144, we get

\(\frac{x^{2}}{16}\) + \(\frac{y^{2}}{9}\) = 1

This is the form of \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1, (a\(^{2}\) > b\(^{2}\)), where a\(^{2}\) = 16 or a = 4 and b\(^{2}\) = 9 or b = 3

We know the coordinates of the vertices are (a, 0) and (-a, 0).

Therefore, the coordinates of the vertices of the ellipse 9x\(^{2}\) + 16y\(^{2}\) - 144 = 0 are (4, 0) and (-4, 0).

 

2. Find the coordinates of the vertices of the ellipse 9x\(^{2}\) + 25y\(^{2}\) - 225 = 0.

Solution:

The given equation of the ellipse is 9x\(^{2}\) + 25y\(^{2}\) - 225 = 0

Now form the above equation we get,

9x\(^{2}\) + 25y\(^{2}\) = 225

Dividing both sides by 225, we get

\(\frac{x^{2}}{25}\) + \(\frac{y^{2}}{9}\) = 1

Comparing the equation \(\frac{x^{2}}{25}\) + \(\frac{y^{2}}{9}\) = 1

with the standard equation of ellipse \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1 (a\(^{2}\) > b\(^{2}\)) we get,

a\(^{2}\) = 25 or a = 5 and b\(^{2}\) = 9 or b = 3

We know the coordinates of the vertices are (a, 0) and (-a, 0).

Therefore, the coordinates of the vertices of the ellipse 9x\(^{2}\) + 25y\(^{2}\) - 225 = 0 are (5, 0) and (-5, 0).

● The Ellipse





11 and 12 Grade Math 

From Vertex of the Ellipse to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Mixed Addition and Subtraction | Questions on Addition

    Jan 12, 25 02:14 PM

    In worksheet on mixed addition and subtraction the questions involve both addition and subtraction together; all grade students can practice the questions on addition and subtraction together.

    Read More

  2. Estimating Sums and Differences | Estimations | Practical Calculations

    Jan 12, 25 02:02 PM

    Estimating Difference
    For estimating sums and differences in the number we use the rounded numbers for estimations to its nearest tens, hundred, and thousand. In many practical calculations, only an approximation is requir…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jan 12, 25 01:36 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Checking Subtraction using Addition |Use Addition to Check Subtraction

    Jan 12, 25 01:13 PM

    Checking Subtraction using Addition Worksheet
    We can check subtraction by adding the difference to the smaller number. Since the sum of difference and smaller number is equal to the larger number, subtraction is correct.

    Read More

  5. Worksheet on Subtraction of 4-Digit Numbers|Subtracting 4-Digit Number

    Jan 12, 25 09:04 AM

    Worksheet on Subtraction of 4-Digit Numbers
    Practice the questions given in the worksheet on subtraction of 4-digit numbers. Here we will subtract two 4-digit numbers (without borrowing and with borrowing) to find the difference between them.

    Read More