Focal Distance of a Point on the Ellipse

What is the focal distance of a point on the ellipse?

The sum of the focal distance of any point on an ellipse is constant and equal to the length of the major axis of the ellipse.

Let P (x, y) be any point on the ellipse \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1.

Let MPM' be the perpendicular through P on directrices ZK and Z'K'. Now by definition we get,

SP = e  PM

⇒ SP = e ∙ NK

⇒ SP = e (CK - CN)

⇒ SP = e(\(\frac{a}{e}\) - x)

⇒ SP = a - ex ………………..…….. (i)

and

S'P = e PM'

⇒ S'P = e (NK')

⇒ S'P = e (CK' + CN)

⇒ S'P = e (\(\frac{a}{e}\) + x)

⇒ S'P = a + ex ………………..…….. (ii)

Therefore, SP + S'P = a - ex + a + ex = 2a = major axis.

Hence, the sum of the focal distance of a point P (x, y) on the ellipse \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1 is constant and equal to the length of the major axis (i.e., 2a) of the ellipse.

Note: This property leads to an alternative definition of ellipse as follows:

If a point moves on a plane in such a way that the sum of its distances from two fixed points on the plane is always a constant then the locus traced out by the moving point on the plane is called an ellipse and the two fixed points are the two foci of the ellipse.


Solved example to find the focal distance of any point on an ellipse:

Find the focal distance of a point on the ellipse 25x\(^{2}\) + 9y\(^{2}\) -150x – 90y + 225 = 0

Solution:

The given equation of the ellipse is 25x\(^{2}\) + 9y\(^{2}\) - 150x - 90y + 225 = 0.

From the above equation we get,

25x\(^{2}\) - 150x + 9y\(^{2}\) - 90y = - 225

⇒ 25(x\(^{2}\) - 6x) + 9(y\(^{2}\) - 10y) = -225

⇒ 25(x\(^{2}\) - 6x + 9) + 9(y\(^{2}\) - 10y + 25) = 225

⇒ 25(x - 3)\(^{2}\) + 9(y - 5)\(^{2}\) = 225

⇒ \(\frac{(x - 3)^{2}}{9}\) + \(\frac{(y - 5)^{2}}{25}\) = 1 ………………….. (i)

Now transfering the origin at (3, 5) without rotating the coordinate axes and denoting the new coordinates with respect to the new axes by x and y, we have

x = X + 3 and y = Y + 5 ………………….. (ii)

Using these relations, equation (i) reduces to

\(\frac{X^{2}}{3^{2}}\) + \(\frac{Y^{2}}{5^{2}}\) = 1 ……………………… (iii)

This is the form of \(\frac{X^{2}}{b^{2}}\) + \(\frac{Y^{2}}{a^{2}}\) = 1 (a\(^{2}\) < b\(^{2}\) ) where a = 5 and b = 3

Now, we get that a > b.

Hence, the equation\(\frac{X^{2}}{3^{2}}\) + \(\frac{Y^{2}}{5^{2}}\) = 1 represents an ellipse whose major axes along X and minor axes along Y axes.

Therefore, the focal distance of a point on the ellipse 25x\(^{2}\) + 9y\(^{2}\) - 150x - 90y + 225 = 0 is major axis = 2a = 2 5 = 10 units.

● The Ellipse





11 and 12 Grade Math

From Focal Distance of a Point on the Ellipse to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. What are Parallel Lines in Geometry? | Two Parallel Lines | Examples

    Apr 19, 24 04:39 PM

    Examples of Parallel Lines
    In parallel lines when two lines do not intersect each other at any point even if they are extended to infinity. What are parallel lines in geometry? Two lines which do not intersect each other

    Read More

  2. Perpendicular Lines | What are Perpendicular Lines in Geometry?|Symbol

    Apr 19, 24 04:01 PM

    Perpendicular Lines
    In perpendicular lines when two intersecting lines a and b are said to be perpendicular to each other if one of the angles formed by them is a right angle. In other words, Set Square Set Square If two…

    Read More

  3. Fundamental Geometrical Concepts | Point | Line | Properties of Lines

    Apr 19, 24 01:50 PM

    Point P
    The fundamental geometrical concepts depend on three basic concepts — point, line and plane. The terms cannot be precisely defined. However, the meanings of these terms are explained through examples.

    Read More

  4. What is a Polygon? | Simple Closed Curve | Triangle | Quadrilateral

    Apr 19, 24 01:22 PM

    Square - Polygon
    What is a polygon? A simple closed curve made of three or more line-segments is called a polygon. A polygon has at least three line-segments.

    Read More

  5. Simple Closed Curves | Types of Closed Curves | Collection of Curves

    Apr 18, 24 01:36 AM

    Closed Curves Examples
    In simple closed curves the shapes are closed by line-segments or by a curved line. Triangle, quadrilateral, circle, etc., are examples of closed curves.

    Read More