Loading [MathJax]/jax/output/HTML-CSS/jax.js

Focal Distance of a Point on the Ellipse

What is the focal distance of a point on the ellipse?

The sum of the focal distance of any point on an ellipse is constant and equal to the length of the major axis of the ellipse.

Let P (x, y) be any point on the ellipse x2a2 + y2b2 = 1.

Let MPM' be the perpendicular through P on directrices ZK and Z'K'. Now by definition we get,

SP = e  PM

⇒ SP = e ∙ NK

⇒ SP = e (CK - CN)

⇒ SP = e(ae - x)

⇒ SP = a - ex ………………..…….. (i)

and

S'P = e PM'

⇒ S'P = e (NK')

⇒ S'P = e (CK' + CN)

⇒ S'P = e (ae + x)

⇒ S'P = a + ex ………………..…….. (ii)

Therefore, SP + S'P = a - ex + a + ex = 2a = major axis.

Hence, the sum of the focal distance of a point P (x, y) on the ellipse x2a2 + y2b2 = 1 is constant and equal to the length of the major axis (i.e., 2a) of the ellipse.

Note: This property leads to an alternative definition of ellipse as follows:

If a point moves on a plane in such a way that the sum of its distances from two fixed points on the plane is always a constant then the locus traced out by the moving point on the plane is called an ellipse and the two fixed points are the two foci of the ellipse.


Solved example to find the focal distance of any point on an ellipse:

Find the focal distance of a point on the ellipse 25x2 + 9y2 -150x – 90y + 225 = 0

Solution:

The given equation of the ellipse is 25x2 + 9y2 - 150x - 90y + 225 = 0.

From the above equation we get,

25x2 - 150x + 9y2 - 90y = - 225

⇒ 25(x2 - 6x) + 9(y2 - 10y) = -225

⇒ 25(x2 - 6x + 9) + 9(y2 - 10y + 25) = 225

⇒ 25(x - 3)2 + 9(y - 5)2 = 225

(x3)29 + (y5)225 = 1 ………………….. (i)

Now transfering the origin at (3, 5) without rotating the coordinate axes and denoting the new coordinates with respect to the new axes by x and y, we have

x = X + 3 and y = Y + 5 ………………….. (ii)

Using these relations, equation (i) reduces to

X232 + Y252 = 1 ……………………… (iii)

This is the form of X2b2 + Y2a2 = 1 (a2 < b2 ) where a = 5 and b = 3

Now, we get that a > b.

Hence, the equationX232 + Y252 = 1 represents an ellipse whose major axes along X and minor axes along Y axes.

Therefore, the focal distance of a point on the ellipse 25x2 + 9y2 - 150x - 90y + 225 = 0 is major axis = 2a = 2 5 = 10 units.

● The Ellipse





11 and 12 Grade Math

From Focal Distance of a Point on the Ellipse to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Area of Rectangle Square and Triangle | Formulas| Area of Plane Shapes

    Jul 18, 25 10:38 AM

    Area of a Square of Side 1 cm
    Area of a closed plane figure is the amount of surface enclosed within its boundary. Look at the given figures. The shaded region of each figure denotes its area. The standard unit, generally used for…

    Read More

  2. What is Area in Maths? | Units to find Area | Conversion Table of Area

    Jul 17, 25 01:06 AM

    Concept of Area
    The amount of surface that a plane figure covers is called its area. It’s unit is square centimeters or square meters etc. A rectangle, a square, a triangle and a circle are all examples of closed pla…

    Read More

  3. Worksheet on Perimeter | Perimeter of Squares and Rectangle | Answers

    Jul 17, 25 12:40 AM

    Most and Least Perimeter
    Practice the questions given in the worksheet on perimeter. The questions are based on finding the perimeter of the triangle, perimeter of the square, perimeter of rectangle and word problems. I. Find…

    Read More

  4. Formation of Square and Rectangle | Construction of Square & Rectangle

    Jul 16, 25 11:46 PM

    Construction of a Square
    In formation of square and rectangle we will learn how to construct square and rectangle. Construction of a Square: We follow the method given below. Step I: We draw a line segment AB of the required…

    Read More

  5. Perimeter of a Figure | Perimeter of a Simple Closed Figure | Examples

    Jul 16, 25 02:33 AM

    Perimeter of a Figure
    Perimeter of a figure is explained here. Perimeter is the total length of the boundary of a closed figure. The perimeter of a simple closed figure is the sum of the measures of line-segments which hav…

    Read More