Focal Distance of a Point on the Ellipse

What is the focal distance of a point on the ellipse?

The sum of the focal distance of any point on an ellipse is constant and equal to the length of the major axis of the ellipse.

Let P (x, y) be any point on the ellipse \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1.

Let MPM' be the perpendicular through P on directrices ZK and Z'K'. Now by definition we get,

SP = e  PM

⇒ SP = e ∙ NK

⇒ SP = e (CK - CN)

⇒ SP = e(\(\frac{a}{e}\) - x)

⇒ SP = a - ex ………………..…….. (i)

and

S'P = e PM'

⇒ S'P = e (NK')

⇒ S'P = e (CK' + CN)

⇒ S'P = e (\(\frac{a}{e}\) + x)

⇒ S'P = a + ex ………………..…….. (ii)

Therefore, SP + S'P = a - ex + a + ex = 2a = major axis.

Hence, the sum of the focal distance of a point P (x, y) on the ellipse \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1 is constant and equal to the length of the major axis (i.e., 2a) of the ellipse.

Note: This property leads to an alternative definition of ellipse as follows:

If a point moves on a plane in such a way that the sum of its distances from two fixed points on the plane is always a constant then the locus traced out by the moving point on the plane is called an ellipse and the two fixed points are the two foci of the ellipse.


Solved example to find the focal distance of any point on an ellipse:

Find the focal distance of a point on the ellipse 25x\(^{2}\) + 9y\(^{2}\) -150x – 90y + 225 = 0

Solution:

The given equation of the ellipse is 25x\(^{2}\) + 9y\(^{2}\) - 150x - 90y + 225 = 0.

From the above equation we get,

25x\(^{2}\) - 150x + 9y\(^{2}\) - 90y = - 225

⇒ 25(x\(^{2}\) - 6x) + 9(y\(^{2}\) - 10y) = -225

⇒ 25(x\(^{2}\) - 6x + 9) + 9(y\(^{2}\) - 10y + 25) = 225

⇒ 25(x - 3)\(^{2}\) + 9(y - 5)\(^{2}\) = 225

⇒ \(\frac{(x - 3)^{2}}{9}\) + \(\frac{(y - 5)^{2}}{25}\) = 1 ………………….. (i)

Now transfering the origin at (3, 5) without rotating the coordinate axes and denoting the new coordinates with respect to the new axes by x and y, we have

x = X + 3 and y = Y + 5 ………………….. (ii)

Using these relations, equation (i) reduces to

\(\frac{X^{2}}{3^{2}}\) + \(\frac{Y^{2}}{5^{2}}\) = 1 ……………………… (iii)

This is the form of \(\frac{X^{2}}{b^{2}}\) + \(\frac{Y^{2}}{a^{2}}\) = 1 (a\(^{2}\) < b\(^{2}\) ) where a = 5 and b = 3

Now, we get that a > b.

Hence, the equation\(\frac{X^{2}}{3^{2}}\) + \(\frac{Y^{2}}{5^{2}}\) = 1 represents an ellipse whose major axes along X and minor axes along Y axes.

Therefore, the focal distance of a point on the ellipse 25x\(^{2}\) + 9y\(^{2}\) - 150x - 90y + 225 = 0 is major axis = 2a = 2 5 = 10 units.

● The Ellipse





11 and 12 Grade Math

From Focal Distance of a Point on the Ellipse to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Estimating Sum and Difference | Reasonable Estimate | Procedure | Math

    May 22, 24 06:21 PM

    The procedure of estimating sum and difference are in the following examples. Example 1: Estimate the sum 5290 + 17986 by estimating the numbers to their nearest (i) hundreds (ii) thousands.

    Read More

  2. Round off to Nearest 1000 |Rounding Numbers to Nearest Thousand| Rules

    May 22, 24 06:14 PM

    Round off to Nearest 1000
    While rounding off to the nearest thousand, if the digit in the hundreds place is between 0 – 4 i.e., < 5, then the hundreds place is replaced by ‘0’. If the digit in the hundreds place is = to or > 5…

    Read More

  3. Round off to Nearest 100 | Rounding Numbers To Nearest Hundred | Rules

    May 22, 24 05:17 PM

    Round off to Nearest 100
    While rounding off to the nearest hundred, if the digit in the tens place is between 0 – 4 i.e. < 5, then the tens place is replaced by ‘0’. If the digit in the units place is equal to or >5, then the…

    Read More

  4. Round off to Nearest 10 |How To Round off to Nearest 10?|Rounding Rule

    May 22, 24 03:49 PM

    Rounding to the Nearest 10
    Round off to nearest 10 is discussed here. Rounding can be done for every place-value of number. To round off a number to the nearest tens, we round off to the nearest multiple of ten. A large number…

    Read More

  5. Rounding Numbers | How do you Round Numbers?|Nearest Hundred, Thousand

    May 22, 24 02:33 PM

    rounding off numbers
    Rounding numbers is required when we deal with large numbers, for example, suppose the population of a district is 5834237, it is difficult to remember the seven digits and their order

    Read More