Focal Distance of a Point on the Ellipse

What is the focal distance of a point on the ellipse?

The sum of the focal distance of any point on an ellipse is constant and equal to the length of the major axis of the ellipse.

Let P (x, y) be any point on the ellipse \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1.

Let MPM' be the perpendicular through P on directrices ZK and Z'K'. Now by definition we get,

SP = e  PM

⇒ SP = e ∙ NK

⇒ SP = e (CK - CN)

⇒ SP = e(\(\frac{a}{e}\) - x)

⇒ SP = a - ex ………………..…….. (i)

and

S'P = e PM'

⇒ S'P = e (NK')

⇒ S'P = e (CK' + CN)

⇒ S'P = e (\(\frac{a}{e}\) + x)

⇒ S'P = a + ex ………………..…….. (ii)

Therefore, SP + S'P = a - ex + a + ex = 2a = major axis.

Hence, the sum of the focal distance of a point P (x, y) on the ellipse \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1 is constant and equal to the length of the major axis (i.e., 2a) of the ellipse.

Note: This property leads to an alternative definition of ellipse as follows:

If a point moves on a plane in such a way that the sum of its distances from two fixed points on the plane is always a constant then the locus traced out by the moving point on the plane is called an ellipse and the two fixed points are the two foci of the ellipse.


Solved example to find the focal distance of any point on an ellipse:

Find the focal distance of a point on the ellipse 25x\(^{2}\) + 9y\(^{2}\) -150x – 90y + 225 = 0

Solution:

The given equation of the ellipse is 25x\(^{2}\) + 9y\(^{2}\) - 150x - 90y + 225 = 0.

From the above equation we get,

25x\(^{2}\) - 150x + 9y\(^{2}\) - 90y = - 225

⇒ 25(x\(^{2}\) - 6x) + 9(y\(^{2}\) - 10y) = -225

⇒ 25(x\(^{2}\) - 6x + 9) + 9(y\(^{2}\) - 10y + 25) = 225

⇒ 25(x - 3)\(^{2}\) + 9(y - 5)\(^{2}\) = 225

⇒ \(\frac{(x - 3)^{2}}{9}\) + \(\frac{(y - 5)^{2}}{25}\) = 1 ………………….. (i)

Now transfering the origin at (3, 5) without rotating the coordinate axes and denoting the new coordinates with respect to the new axes by x and y, we have

x = X + 3 and y = Y + 5 ………………….. (ii)

Using these relations, equation (i) reduces to

\(\frac{X^{2}}{3^{2}}\) + \(\frac{Y^{2}}{5^{2}}\) = 1 ……………………… (iii)

This is the form of \(\frac{X^{2}}{b^{2}}\) + \(\frac{Y^{2}}{a^{2}}\) = 1 (a\(^{2}\) < b\(^{2}\) ) where a = 5 and b = 3

Now, we get that a > b.

Hence, the equation\(\frac{X^{2}}{3^{2}}\) + \(\frac{Y^{2}}{5^{2}}\) = 1 represents an ellipse whose major axes along X and minor axes along Y axes.

Therefore, the focal distance of a point on the ellipse 25x\(^{2}\) + 9y\(^{2}\) - 150x - 90y + 225 = 0 is major axis = 2a = 2 5 = 10 units.

● The Ellipse





11 and 12 Grade Math

From Focal Distance of a Point on the Ellipse to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Data Handling | Collection of Objects |Information Collected

    Dec 15, 24 02:21 PM

    Data Handling Count and Write
    We have learnt, that a collection of objects can be stored out based on their color, shape, size or any other common thing among them. We can organise all the information in a table to understand how…

    Read More

  2. Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

    Dec 15, 24 10:27 AM

    Complete the Series Patterns
    We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…

    Read More

  3. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 14, 24 02:12 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  4. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 14, 24 12:25 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More

  5. Patterns in Math | Missing Number | Counting Numbers | Worksheets

    Dec 13, 24 12:31 AM

    Finding patterns in math is very important to understand the sequence in the series. We need to find the exact missing number that from the group of numbers. The counting numbers may be counting

    Read More