Standard Equation of an Ellipse

We will learn how to find the standard equation of an ellipse.

Let S be the focus, ZK the straight line (directrix) of the ellipse and e (0 < e < 1) be its eccentricity. From S draw SK perpendicular to the directrix KZ. Suppose the line segment SK is divided internally at A and externally at A' (on KS produced) respectively in the ratio e : 1.

Therefore, \(\frac{SA}{AK}\) = e : 1

\(\frac{SA}{AK}\) = \(\frac{e}{1}\)

⇒ SA = e ∙ AK ...................... (i) and 

\(\frac{SA'}{A'K}\) = e : 1

\(\frac{SA'}{A'K}\) = \(\frac{e}{1}\)

⇒ SA' = e ∙ A'K ...................... (ii)

We can clearly see that the points A and A'' lies on the ellipse since, their distance from the focus (S) bear constant ratio e (< 1) to their respective distance from the directrix.

Let C be the mid-point of the line-segment AA'; draw CY perpendicular to AA'.

Now, let us choose C as the origin CA and CY are chosen as x and y-axes respectively.

Therefore, AA' = 2a

A'C = CA = a.

Now, adding (i) and (ii) we get,

SA + SA' = e (AK + A'K) 

AA' = e (CK - CA + CK + CA')

2a = e (2CK - CA + CA')

2a = 2e CK,  (Since, CA = CA')

CK = \(\frac{a}{e}\) ...................... (iii)

Similarly, subtracting (i) from (ii) we get,

SA' - SA = e (KA' - AK)

(CA' + CS) - (CA - CS) = e . (AA')

2CS = e 2a, [Since, CA' = CA]    

CS = ae ...................... (iv)

Let P (x, y) be any point on the required ellipse. From P draw PM perpendicular to KZ and PN perpendicular to CX and join SP.

Then, CN = x, PN = y and

PM = NK = CK - CN = \(\frac{a}{e}\) – x, [Since, CK = \(\frac{a}{e}\)] and

SN = CS - CN = ae - x, [Since, CS = ae]  

Since the point P lies on the required ellipse, Therefore, by the definition we get,

\(\frac{SP}{PM}\) = e   

SP = e PM

SP\(^{2}\) = e\(^{2}\) . PM\(^{2}\)

or  (ae - x)\(^{2}\) + (y - 0)\(^{2}\) = e\(^{2}\)[\(\frac{a}{e}\) - x]\(^{2}\)

⇒ x\(^{2}\)(1 – e\(^{2}\)) + y\(^{2}\) = a\(^{2}\)(1 – e\(^{2}\))

\(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{a^{2}(1 - e^{2})}\) = 1

\(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{a^{2}(1 - e^{2})}\) = 1

Since 0 < e < 1, hence a\(^{2}\)(1 - e\(^{2}\)) is always positive; therefore, if a\(^{2}\)(1 - e\(^{2}\)) = b\(^{2}\), the above equation becomes,  \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1. 

The relation \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1 is satisfied by the co-ordinates of all points P (x, y) on the required ellipse and hence, represents the required equation of the ellipse.

The equation of an ellipse in the form \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1 is called the standard equation of the ellipse.


Notes:

(i) b\(^{2}\) < a\(^{2}\), since e\(^{2}\) < 1 and b\(^{2}\) = a\(^{2}\)(1 - e\(^{2}\))

(ii)  b\(^{2}\) = a\(^{2}\)(1 – e\(^{2}\))

\(\frac{b^{2}}{a^{2}}\) = 1 – e\(^{2}\), [Dividing both sides by a\(^{2}\)]   

e\(^{2}\) = 1 - \(\frac{b^{2}}{a^{2}}\)  

e = \(\sqrt{ 1 - \frac{b^{2}}{a^{2}}}\), [taking square root on both sides]

Form the above relation e = \(\sqrt{ 1 - \frac{b^{2}}{a^{2}}}\), we can find the value of e when a and b are given.

● The Ellipse


11 and 12 Grade Math 

From Standard Equation of an Ellipse to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Word Problems on Area and Perimeter | Free Worksheet with Answers

    Jul 26, 24 04:58 PM

    word problems on area and perimeter

    Read More

  2. Worksheet on Perimeter | Perimeter of Squares and Rectangle | Answers

    Jul 26, 24 04:37 PM

    Most and Least Perimeter
    Practice the questions given in the worksheet on perimeter. The questions are based on finding the perimeter of the triangle, perimeter of the square, perimeter of rectangle and word problems. I. Find…

    Read More

  3. Perimeter and Area of Irregular Figures | Solved Example Problems

    Jul 26, 24 02:20 PM

    Perimeter of Irregular Figures
    Here we will get the ideas how to solve the problems on finding the perimeter and area of irregular figures. The figure PQRSTU is a hexagon. PS is a diagonal and QY, RO, TX and UZ are the respective d…

    Read More

  4. Perimeter and Area of Plane Figures | Definition of Perimeter and Area

    Jul 26, 24 11:50 AM

    Perimeter of a Triangle
    A plane figure is made of line segments or arcs of curves in a plane. It is a closed figure if the figure begins and ends at the same point. We are familiar with plane figures like squares, rectangles…

    Read More

  5. 5th Grade Math Problems | Table of Contents | Worksheets |Free Answers

    Jul 26, 24 01:35 AM

    In 5th grade math problems you will get all types of examples on different topics along with the solutions. Keeping in mind the mental level of child in Grade 5, every efforts has been made to introdu…

    Read More