Standard Equation of an Ellipse

We will learn how to find the standard equation of an ellipse.

Let S be the focus, ZK the straight line (directrix) of the ellipse and e (0 < e < 1) be its eccentricity. From S draw SK perpendicular to the directrix KZ. Suppose the line segment SK is divided internally at A and externally at A' (on KS produced) respectively in the ratio e : 1.

Therefore, \(\frac{SA}{AK}\) = e : 1

\(\frac{SA}{AK}\) = \(\frac{e}{1}\)

⇒ SA = e ∙ AK ...................... (i) and 

\(\frac{SA'}{A'K}\) = e : 1

\(\frac{SA'}{A'K}\) = \(\frac{e}{1}\)

⇒ SA' = e ∙ A'K ...................... (ii)

We can clearly see that the points A and A'' lies on the ellipse since, their distance from the focus (S) bear constant ratio e (< 1) to their respective distance from the directrix.

Let C be the mid-point of the line-segment AA'; draw CY perpendicular to AA'.

Now, let us choose C as the origin CA and CY are chosen as x and y-axes respectively.

Therefore, AA' = 2a

A'C = CA = a.

Now, adding (i) and (ii) we get,

SA + SA' = e (AK + A'K) 

AA' = e (CK - CA + CK + CA')

2a = e (2CK - CA + CA')

2a = 2e CK,  (Since, CA = CA')

CK = \(\frac{a}{e}\) ...................... (iii)

Similarly, subtracting (i) from (ii) we get,

SA' - SA = e (KA' - AK)

(CA' + CS) - (CA - CS) = e . (AA')

2CS = e 2a, [Since, CA' = CA]    

CS = ae ...................... (iv)

Let P (x, y) be any point on the required ellipse. From P draw PM perpendicular to KZ and PN perpendicular to CX and join SP.

Then, CN = x, PN = y and

PM = NK = CK - CN = \(\frac{a}{e}\) – x, [Since, CK = \(\frac{a}{e}\)] and

SN = CS - CN = ae - x, [Since, CS = ae]  

Since the point P lies on the required ellipse, Therefore, by the definition we get,

\(\frac{SP}{PM}\) = e   

SP = e PM

SP\(^{2}\) = e\(^{2}\) . PM\(^{2}\)

or  (ae - x)\(^{2}\) + (y - 0)\(^{2}\) = e\(^{2}\)[\(\frac{a}{e}\) - x]\(^{2}\)

⇒ x\(^{2}\)(1 – e\(^{2}\)) + y\(^{2}\) = a\(^{2}\)(1 – e\(^{2}\))

\(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{a^{2}(1 - e^{2})}\) = 1

\(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{a^{2}(1 - e^{2})}\) = 1

Since 0 < e < 1, hence a\(^{2}\)(1 - e\(^{2}\)) is always positive; therefore, if a\(^{2}\)(1 - e\(^{2}\)) = b\(^{2}\), the above equation becomes,  \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1. 

The relation \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1 is satisfied by the co-ordinates of all points P (x, y) on the required ellipse and hence, represents the required equation of the ellipse.

The equation of an ellipse in the form \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1 is called the standard equation of the ellipse.


Notes:

(i) b\(^{2}\) < a\(^{2}\), since e\(^{2}\) < 1 and b\(^{2}\) = a\(^{2}\)(1 - e\(^{2}\))

(ii)  b\(^{2}\) = a\(^{2}\)(1 – e\(^{2}\))

\(\frac{b^{2}}{a^{2}}\) = 1 – e\(^{2}\), [Dividing both sides by a\(^{2}\)]   

e\(^{2}\) = 1 - \(\frac{b^{2}}{a^{2}}\)  

e = \(\sqrt{ 1 - \frac{b^{2}}{a^{2}}}\), [taking square root on both sides]

Form the above relation e = \(\sqrt{ 1 - \frac{b^{2}}{a^{2}}}\), we can find the value of e when a and b are given.

● The Ellipse


11 and 12 Grade Math 

From Standard Equation of an Ellipse to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Multiplying 3-Digit Number by 1-Digit Number | Three-Digit Multiplicat

    Jan 15, 25 01:54 PM

    Multiplying 3-Digit Number by 1-Digit Number
    Here we will learn multiplying 3-digit number by 1-digit number. In two different ways we will learn to multiply a two-digit number by a one-digit number. 1. Multiply 201 by 3 Step I: Arrange the numb…

    Read More

  2. Worksheet on Basic Multiplication Facts | Repeated Addition Fact

    Jan 15, 25 12:40 PM

    Worksheet on Basic Multiplication Facts
    Practice some known facts given in the worksheet on basic multiplication facts. The questions are based on the multiplication fact and repeated addition fact. 1. Write the multiplication fact for each

    Read More

  3. Worksheet on Facts about Multiplication | Multiplication Sum | Answers

    Jan 15, 25 01:24 AM

    Facts about Multiplication Work
    Practice the worksheet on facts about multiplication. We know in multiplication, the number being multiplied is called the multiplicand and the number by which it is being multiplied is called the mul…

    Read More

  4. Facts about Multiplication | Multiplicand | Multiplier | Product

    Jan 15, 25 01:03 AM

    We have learnt multiplication of numbers with 2digit multiplier. Now, we will learn more. Let us know some facts about multiplication. 1. In multiplication, the number being multiplied is called the m…

    Read More

  5. Basic Multiplication Facts | Repeated Addition |Multiplication Process

    Jan 15, 25 12:23 AM

    Understanding Multiplication
    Some basic multiplication facts are needed to follow for multiplying numbers. The repeated addition of the same number is expressed by multiplication in short.

    Read More