Standard Equation of an Ellipse

We will learn how to find the standard equation of an ellipse.

Let S be the focus, ZK the straight line (directrix) of the ellipse and e (0 < e < 1) be its eccentricity. From S draw SK perpendicular to the directrix KZ. Suppose the line segment SK is divided internally at A and externally at A' (on KS produced) respectively in the ratio e : 1.

Therefore, \(\frac{SA}{AK}\) = e : 1

\(\frac{SA}{AK}\) = \(\frac{e}{1}\)

⇒ SA = e ∙ AK ...................... (i) and 

\(\frac{SA'}{A'K}\) = e : 1

\(\frac{SA'}{A'K}\) = \(\frac{e}{1}\)

⇒ SA' = e ∙ A'K ...................... (ii)

We can clearly see that the points A and A'' lies on the ellipse since, their distance from the focus (S) bear constant ratio e (< 1) to their respective distance from the directrix.

Let C be the mid-point of the line-segment AA'; draw CY perpendicular to AA'.

Now, let us choose C as the origin CA and CY are chosen as x and y-axes respectively.

Therefore, AA' = 2a

A'C = CA = a.

Now, adding (i) and (ii) we get,

SA + SA' = e (AK + A'K) 

AA' = e (CK - CA + CK + CA')

2a = e (2CK - CA + CA')

2a = 2e CK,  (Since, CA = CA')

CK = \(\frac{a}{e}\) ...................... (iii)

Similarly, subtracting (i) from (ii) we get,

SA' - SA = e (KA' - AK)

(CA' + CS) - (CA - CS) = e . (AA')

2CS = e 2a, [Since, CA' = CA]    

CS = ae ...................... (iv)

Let P (x, y) be any point on the required ellipse. From P draw PM perpendicular to KZ and PN perpendicular to CX and join SP.

Then, CN = x, PN = y and

PM = NK = CK - CN = \(\frac{a}{e}\) – x, [Since, CK = \(\frac{a}{e}\)] and

SN = CS - CN = ae - x, [Since, CS = ae]  

Since the point P lies on the required ellipse, Therefore, by the definition we get,

\(\frac{SP}{PM}\) = e   

SP = e PM

SP\(^{2}\) = e\(^{2}\) . PM\(^{2}\)

or  (ae - x)\(^{2}\) + (y - 0)\(^{2}\) = e\(^{2}\)[\(\frac{a}{e}\) - x]\(^{2}\)

⇒ x\(^{2}\)(1 – e\(^{2}\)) + y\(^{2}\) = a\(^{2}\)(1 – e\(^{2}\))

\(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{a^{2}(1 - e^{2})}\) = 1

\(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{a^{2}(1 - e^{2})}\) = 1

Since 0 < e < 1, hence a\(^{2}\)(1 - e\(^{2}\)) is always positive; therefore, if a\(^{2}\)(1 - e\(^{2}\)) = b\(^{2}\), the above equation becomes,  \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1. 

The relation \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1 is satisfied by the co-ordinates of all points P (x, y) on the required ellipse and hence, represents the required equation of the ellipse.

The equation of an ellipse in the form \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1 is called the standard equation of the ellipse.


Notes:

(i) b\(^{2}\) < a\(^{2}\), since e\(^{2}\) < 1 and b\(^{2}\) = a\(^{2}\)(1 - e\(^{2}\))

(ii)  b\(^{2}\) = a\(^{2}\)(1 – e\(^{2}\))

\(\frac{b^{2}}{a^{2}}\) = 1 – e\(^{2}\), [Dividing both sides by a\(^{2}\)]   

e\(^{2}\) = 1 - \(\frac{b^{2}}{a^{2}}\)  

e = \(\sqrt{ 1 - \frac{b^{2}}{a^{2}}}\), [taking square root on both sides]

Form the above relation e = \(\sqrt{ 1 - \frac{b^{2}}{a^{2}}}\), we can find the value of e when a and b are given.

● The Ellipse


11 and 12 Grade Math 

From Standard Equation of an Ellipse to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Adding 1-Digit Number | Understand the Concept one Digit Number

    Sep 18, 24 03:29 PM

    Add by Counting Forward
    Understand the concept of adding 1-digit number with the help of objects as well as numbers.

    Read More

  2. Addition of Numbers using Number Line | Addition Rules on Number Line

    Sep 18, 24 02:47 PM

    Addition Using the Number Line
    Addition of numbers using number line will help us to learn how a number line can be used for addition. Addition of numbers can be well understood with the help of the number line.

    Read More

  3. Counting Before, After and Between Numbers up to 10 | Number Counting

    Sep 17, 24 01:47 AM

    Before After Between
    Counting before, after and between numbers up to 10 improves the child’s counting skills.

    Read More

  4. Worksheet on Three-digit Numbers | Write the Missing Numbers | Pattern

    Sep 17, 24 12:10 AM

    Reading 3-digit Numbers
    Practice the questions given in worksheet on three-digit numbers. The questions are based on writing the missing number in the correct order, patterns, 3-digit number in words, number names in figures…

    Read More

  5. Arranging Numbers | Ascending Order | Descending Order |Compare Digits

    Sep 16, 24 11:24 PM

    Arranging Numbers
    We know, while arranging numbers from the smallest number to the largest number, then the numbers are arranged in ascending order. Vice-versa while arranging numbers from the largest number to the sma…

    Read More