Processing math: 100%

Playing Cards Probability

Playing cards probability problems based on a well-shuffled deck of 52 cards.


Basic concept on drawing a card:

In a pack or deck of 52 playing cards, they are divided into 4 suits of 13 cards each i.e. spades ♠ hearts , diamonds , clubs .

Cards of Spades and clubs are black cards.

Cards of hearts and diamonds are red cards.

The card in each suit, are ace, king, queen, jack or knaves, 10, 9, 8, 7, 6, 5, 4, 3 and 2.

King, Queen and Jack (or Knaves) are face cards. So, there are 12 face cards in the deck of 52 playing cards.


Worked-out problems on Playing cards probability:

1. A card is drawn from a well shuffled pack of 52 cards. Find the probability of:

(i) ‘2’ of spades

(ii) a jack

(iii) a king of red colour

(iv) a card of diamond

(v) a king or a queen

(vi) a non-face card

(vii) a black face card

(viii) a black card

(ix) a non-ace

(x) non-face card of black colour

(xi) neither a spade nor a jack

(xii) neither a heart nor a red king

Solution:

In a playing card there are 52 cards.

Therefore the total number of possible outcomes = 52

(i) ‘2’ of spades:

Number of favourable outcomes i.e. ‘2’ of spades is 1 out of 52 cards.

Therefore, probability of getting ‘2’ of spade

               Number of favorable outcomes
P(A) =     Total number of possible outcome


      = 1/52

(ii) a jack

Number of favourable outcomes i.e. ‘a jack’ is 4 out of 52 cards.

Therefore, probability of getting ‘a jack’

               Number of favorable outcomes
P(B) =     Total number of possible outcome


      = 4/52
      = 1/13

(iii) a king of red colour

Number of favourable outcomes i.e. ‘a king of red colour’ is 2 out of 52 cards.

Therefore, probability of getting ‘a king of red colour’

               Number of favorable outcomes
P(C) =     Total number of possible outcome


      = 2/52
      = 1/26

(iv) a card of diamond

Number of favourable outcomes i.e. ‘a card of diamond’ is 13 out of 52 cards.

Therefore, probability of getting ‘a card of diamond’

               Number of favorable outcomes
P(D) =     Total number of possible outcome


      = 13/52
      = 1/4

(v) a king or a queen

Total number of king is 4 out of 52 cards.

Total number of queen is 4 out of 52 cards

Number of favourable outcomes i.e. ‘a king or a queen’ is 4 + 4 = 8 out of 52 cards.

Therefore, probability of getting ‘a king or a queen’

               Number of favorable outcomes
P(E) =     Total number of possible outcome


      = 8/52
      = 2/13

(vi) a non-face card

Total number of face card out of 52 cards = 3 times 4 = 12

Total number of non-face card out of 52 cards = 52 - 12 = 40

Therefore, probability of getting ‘a non-face card’

               Number of favorable outcomes
P(F) =     Total number of possible outcome


      = 40/52
      = 10/13

(vii) a black face card:

Cards of Spades and Clubs are black cards.

Number of face card in spades (king, queen and jack or knaves) = 3

Number of face card in clubs (king, queen and jack or knaves) = 3

Therefore, total number of black face card out of 52 cards = 3 + 3 = 6

Therefore, probability of getting ‘a black face card’

               Number of favorable outcomes
P(G) =     Total number of possible outcome


      = 6/52
      = 3/26

(viii) a black card:

Cards of spades and clubs are black cards.

Number of spades = 13

Number of clubs = 13

Therefore, total number of black card out of 52 cards = 13 + 13 = 26

Therefore, probability of getting ‘a black card’

               Number of favorable outcomes
P(H) =     Total number of possible outcome


      = 26/52
      = 1/2

(ix) a non-ace:

Number of ace cards in each of four suits namely spades, hearts, diamonds and clubs = 1

Therefore, total number of ace cards out of 52 cards = 4

Thus, total number of non-ace cards out of 52 cards = 52 - 4

= 48

Therefore, probability of getting ‘a non-ace’

               Number of favorable outcomes
P(I) =     Total number of possible outcome


      = 48/52
      = 12/13

(x) non-face card of black colour:

Cards of spades and clubs are black cards.

Number of spades = 13

Number of clubs = 13

Therefore, total number of black card out of 52 cards = 13 + 13 = 26

Number of face cards in each suits namely spades and clubs = 3 + 3 = 6

Therefore, total number of non-face card of black colour out of 52 cards = 26 - 6 = 20

Therefore, probability of getting ‘non-face card of black colour’

               Number of favorable outcomes
P(J) =     Total number of possible outcome


      = 20/52
      = 5/13

(xi) neither a spade nor a jack

Number of spades = 13

Total number of non-spades out of 52 cards = 52 - 13 = 39

Number of jack out of 52 cards = 4

Number of jack in each of three suits namely hearts, diamonds and clubs = 3

[Since, 1 jack is already included in the 13 spades so, here we will take number of jacks is 3]

Neither a spade nor a jack = 39 - 3 = 36

Therefore, probability of getting ‘neither a spade nor a jack’

               Number of favorable outcomes
P(K) =     Total number of possible outcome


      = 36/52
      = 9/13

(xii) neither a heart nor a red king

Number of hearts = 13

Total number of non-hearts out of 52 cards = 52 - 13 = 39

Therefore, spades, clubs and diamonds are the 39 cards.

Cards of hearts and diamonds are red cards.

Number of red kings in red cards = 2

Therefore, neither a heart nor a red king = 39 - 1 = 38

[Since, 1 red king is already included in the 13 hearts so, here we will take number of red kings is 1]

Therefore, probability of getting ‘neither a heart nor a red king’

               Number of favorable outcomes
P(L) =     Total number of possible outcome


      = 38/52
      = 19/26

Playing Cards Probability


2. A card is drawn at random from a well-shuffled pack of cards numbered 1 to 20. Find the probability of

(i) getting a number less than 7

(ii) getting a number divisible by 3.

Solution:

(i) Total number of possible outcomes = 20 ( since there are cards numbered 1, 2, 3, ..., 20).

Number of favourable outcomes for the event E

                                = number of cards showing less than 7 = 6 (namely 1, 2, 3, 4, 5, 6).

So, P(E) = Number of Favourable Outcomes for the Event ETotal Number of Possible Outcomes

             = 620

             = 310.


(ii) Total number of possible outcomes = 20.

Number of favourable outcomes for the event F

                                = number of cards showing a number divisible by 3 = 6 (namely 3, 6, 9, 12, 15, 18).

So, P(F) = Number of Favourable Outcomes for the Event FTotal Number of Possible Outcomes

             = 620

             = 310.


3. A card is drawn at random from a pack of 52 playing cards. Find the probability that the card drawn is 

(i) a king

(ii) neither a queen nor a jack.

Solution:

Total number of possible outcomes = 52 (As there are 52 different cards).

(i) Number of favourable outcomes for the event E = number of kings in the pack = 4.

So, by definition, P(E) = 452

                                 = 113.


(ii) Number of favourable outcomes for the event F

                    = number of cards which are neither a queen nor a jack

                    = 52 - 4 - 4, [Since there are 4 queens and 4 jacks].

                    = 44

Therefore, by definition, P(F) = 4452

                                          = 1113.

These are the basic problems on probability with playing cards.

Probability

Probability

Random Experiments

Experimental Probability

Events in Probability

Empirical Probability

Coin Toss Probability

Probability of Tossing Two Coins

Probability of Tossing Three Coins

Complimentary Events

Mutually Exclusive Events

Mutually Non-Exclusive Events

Conditional Probability

Theoretical Probability

Odds and Probability

Playing Cards Probability

Probability and Playing Cards

Probability for Rolling Two Dice

Solved Probability Problems

Probability for Rolling Three Dice









9th Grade Math

From Playing Cards Probability to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Quadrilaterals | Four Sided Polygon | Closed Figure | Adjoining Figure

    Jul 14, 25 02:55 AM

    Square
    Quadrilaterals are known as four sided polygon.What is a quadrilateral? A closed figure made of our line segments is called a quadrilateral. For example:

    Read More

  2. Formation of Numbers | Smallest and Greatest Number| Number Formation

    Jul 14, 25 01:53 AM

    In formation of numbers we will learn the numbers having different numbers of digits. We know that: (i) Greatest number of one digit = 9,

    Read More

  3. 5th Grade Geometry Practice Test | Angle | Triangle | Circle |Free Ans

    Jul 14, 25 01:53 AM

    Name the Angles
    In 5th grade geometry practice test you will get different types of practice questions on lines, types of angle, triangles, properties of triangles, classification of triangles, construction of triang…

    Read More

  4. 5th Grade Circle Worksheet | Free Worksheet with Answer |Practice Math

    Jul 11, 25 02:14 PM

    Radii of the circRadii, Chords, Diameters, Semi-circles
    In 5th Grade Circle Worksheet you will get different types of questions on parts of a circle, relation between radius and diameter, interior of a circle, exterior of a circle and construction of circl…

    Read More

  5. Construction of a Circle | Working Rules | Step-by-step Explanation |

    Jul 09, 25 01:29 AM

    Parts of a Circle
    Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

    Read More