Probability for Rolling Three Dice

Probability for rolling three dice with the six sided dots such as 1, 2, 3, 4, 5 and 6 dots in each (three) dies.

When three dice are thrown simultaneously/randomly, thus number of event can be 63 = (6 × 6 × 6) = 216 because each die has 1 to 6 number on its faces.

Worked-out problems involving probability for rolling three dice:

1. Three dice are thrown together. Find the probability of:

(i) getting a total of 5

(ii) getting a total of atmost 5

(iii) getting a total of at least 5.

(iv) getting a total of 6.

(v) getting a total of atmost 6.

(vi) getting a total of at least 6.

Solution:

Three different dice are thrown at the same time.

Therefore, total number of possible outcomes will be 63 = (6 × 6 × 6) = 216.

(i) getting a total of 5:

Number of events of getting a total of 5 = 6

i.e. (1, 1, 3), (1, 3, 1), (3, 1, 1), (2, 2, 1), (2, 1, 2) and (1, 2, 2)

Therefore, probability of getting a total of 5

               Number of favorable outcomes
P(E1) =     Total number of possible outcome


      = 6/216
      = 1/36

(ii) getting a total of atmost 5:

Number of events of getting a total of atmost 5 = 10

i.e. (1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1), (1, 1, 3), (1, 3, 1), (3, 1, 1), (2, 2, 1) and (1, 2, 2).

Therefore, probability of getting a total of atmost 5

               Number of favorable outcomes
P(E2) =     Total number of possible outcome


      = 10/216
      = 5/108

(iii) getting a total of at least 5:

Number of events of getting a total of less than 5 = 4

i.e. (1, 1, 1), (1, 1, 2), (1, 2, 1) and (2, 1, 1).

Therefore, probability of getting a total of less than 5

               Number of favorable outcomes
P(E3) =     Total number of possible outcome


      = 4/216
      = 1/54

Therefore, probability of getting a total of at least 5 = 1 - P(getting a total of less than 5)

= 1 - 1/54

= (54 - 1)/54

= 53/54

(iv) getting a total of 6:

Number of events of getting a total of 6 = 10

i.e. (1, 1, 4), (1, 4, 1), (4, 1, 1), (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1) and (2, 2, 2).

Therefore, probability of getting a total of 6

               Number of favorable outcomes
P(E4) =     Total number of possible outcome


      = 10/216
      = 5/108

(v) getting a total of atmost 6:

Number of events of getting a total of atmost 6 = 20

i.e. (1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1), (1, 1, 3), (1, 3, 1), (3, 1, 1), (2, 2, 1), (1, 2, 2), (1, 1, 4), (1, 4, 1), (4, 1, 1), (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1) and (2, 2, 2).

Therefore, probability of getting a total of atmost 6

               Number of favorable outcomes
P(E5) =     Total number of possible outcome


      = 20/216
      = 5/54

(vi) getting a total of at least 6:

Number of events of getting a total of less than 6 (event of getting a total of 3, 4 or 5) = 10

i.e. (1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1) (1, 1, 3), (1, 3, 1), (3, 1, 1), (1, 2, 2), (2, 1, 2), (2, 2, 1).

Therefore, probability of getting a total of less than 6

               Number of favorable outcomes
P(E6) =     Total number of possible outcome


      = 10/216
      = 5/108

Therefore, probability of getting a total of at least 6 = 1 - P(getting a total of less than 6)

= 1 - 5/108

= (108 - 5)/108

= 103/108

These examples will help us to solve different types of problems based on probability for rolling three dice.

Probability

Probability

Random Experiments

Experimental Probability

Events in Probability

Empirical Probability

Coin Toss Probability

Probability of Tossing Two Coins

Probability of Tossing Three Coins

Complimentary Events

Mutually Exclusive Events

Mutually Non-Exclusive Events

Conditional Probability

Theoretical Probability

Odds and Probability

Playing Cards Probability

Probability and Playing Cards

Probability for Rolling Two Dice

Solved Probability Problems

Probability for Rolling Three Dice









9th Grade Math

From Probability for Rolling Three Dice to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Types of Fractions |Proper Fraction |Improper Fraction |Mixed Fraction

    Mar 02, 24 05:31 PM

    Fractions
    The three types of fractions are : Proper fraction, Improper fraction, Mixed fraction, Proper fraction: Fractions whose numerators are less than the denominators are called proper fractions. (Numerato…

    Read More

  2. Subtraction of Fractions having the Same Denominator | Like Fractions

    Mar 02, 24 04:36 PM

    Subtraction of Fractions having the Same Denominator
    To find the difference between like fractions we subtract the smaller numerator from the greater numerator. In subtraction of fractions having the same denominator, we just need to subtract the numera…

    Read More

  3. Addition of Like Fractions | Examples | Worksheet | Answer | Fractions

    Mar 02, 24 03:32 PM

    Adding Like Fractions
    To add two or more like fractions we simplify add their numerators. The denominator remains same. Thus, to add the fractions with the same denominator, we simply add their numerators and write the com…

    Read More

  4. Comparison of Unlike Fractions | Compare Unlike Fractions | Examples

    Mar 01, 24 01:42 PM

    Comparison of Unlike Fractions
    In comparison of unlike fractions, we change the unlike fractions to like fractions and then compare. To compare two fractions with different numerators and different denominators, we multiply by a nu…

    Read More

  5. Equivalent Fractions | Fractions |Reduced to the Lowest Term |Examples

    Feb 29, 24 05:12 PM

    Equivalent Fractions
    The fractions having the same value are called equivalent fractions. Their numerator and denominator can be different but, they represent the same part of a whole. We can see the shade portion with re…

    Read More