Coin Toss Probability

Problems on coin toss probability are explained here with different examples.

When we flip a coin there is always a probability to get a head or a tail is 50 percent.

Suppose a coin tossed then we get two possible outcomes either a ‘head’ (H) or a ‘tail’ (T), and it is impossible to predict whether the result of a toss will be a ‘head’ or ‘tail’.

The probability for equally likely outcomes in an event is:

Number of favourable outcomes ÷ Total number of possible outcomes

Total number of possible outcomes = 2

(i) If the favourable outcome is head (H).

Number of favourable outcomes = 1.

Therefore, P(getting a head)

               Number of favorable outcomes
= P(H) =   total number of possible outcomes

= 1/2.

(ii) If the favourable outcome is tail (T).

Number of favourable outcomes = 1.

Therefore, P(getting a tail)

               Number of favorable outcomes
= P(T) =   total number of possible outcomes

= 1/2.

Word Problems on Coin Toss Probability:

1. A coin is tossed twice at random. What is the probability of getting

(i) at least one head

(ii) the same face?

Solution:

The possible outcomes are HH, HT, TH, TT.

So, total number of outcomes = 4.

(i) Number of favourable outcomes for event E

                              = Number of outcomes having at least one head

                              = 3 (as HH, HT, TH are having at least one head).

So, by definition, P(F) = \(\frac{3}{4}\).


(ii) Number of favourable outcomes for event E

                              = Number of outcomes having the same face

                              = 2 (as HH, TT are have the same face).

So, by definition, P(F) = \(\frac{2}{4}\) = \(\frac{1}{2}\).


2. If three fair coins are tossed randomly 175 times and it is found that three heads appeared 21 times, two heads appeared 56 times, one head appeared 63 times and zero head appeared 35 times. 

What is the probability of getting 

(i) three heads, (ii) two heads, (iii) one head, (iv) 0 head. 

Solution: 

Total number of trials = 175. 

Number of times three heads appeared = 21. 

Number of times two heads appeared = 56. 

Number of times one head appeared = 63. 

Number of times zero head appeared = 35. 

Let E1, E2, E3 and E4 be the events of getting three heads, two heads, one head and zero head respectively.

(i) P(getting three heads)

            Number of times three heads appeared
= P(E1) =             total number of trials             

= 21/175

= 0.12

(ii) P(getting two heads)

            Number of times two heads appeared
= P(E2) =             total number of trials           

= 56/175

= 0.32

(iii) P(getting one head)

            Number of times one head appeared
= P(E3) =             total number of trials         

= 63/175

= 0.36

(iv) P(getting zero head)

            Number of times zero head appeared
= P(E4) =             total number of trials          

= 35/175

= 0.20

Note: Remember when 3 coins are tossed randomly, the only possible outcomes

are E2, E3, E4 and

P(E1) + P(E2) + P(E3) + P(E4)

= (0.12 + 0.32 + 0.36 + 0.20)

= 1


3. Two coins are tossed randomly 120 times and it is found that two tails appeared 60 times, one tail appeared 48 times and no tail appeared 12 times.

If two coins are tossed at random, what is the probability of getting

(i) 2 tails,

(ii) 1 tail,

(iii) 0 tail

Solution:

Total number of trials = 120

Number of times 2 tails appear = 60 

Number of times 1 tail appears = 48

Number of times 0 tail appears = 12

Let E1, E2 and E3 be the events of getting 2 tails, 1 tail and 0 tail respectively.

(i) P(getting 2 tails)

            Number of times 2 tails appear
= P(E1) =       total number of trials       

= 60/120

= 0.50

(ii) P(getting 1 tail)

            Number of times 1 tail appear
= P(E2) =       total number of trials       

= 48/120

= 0.40

(iii) P(getting 0 tail)

            Number of times no tail appear
= P(E3) =       total number of trials       

= 12/120

= 0.10

Note:

Remember while tossing 2 coins simultaneously, the only possible outcomes are E1, E2, E3 and,

P(E1) + P(E2) + P(E3)

= (0.50 + 0.40 + 0.10)

= 1

Coin Toss Probability


4. Suppose a fair coin is randomly tossed for 75 times and it is found that head turns up 45 times and tail 30 times. What is the probability of getting (i) a head and (ii) a tail?

Solution:

Total number of trials = 75.

Number of times head turns up = 45

Number of times tail turns up = 30

(i) Let X be the event of getting a head.

P(getting a head)

            Number of times head turns up
= P(X) =       total number of trials        

= 45/75

= 0.60

(ii) Let Y be the event of getting a tail.

P(getting a tail)

            Number of times tail turns up
= P(Y) =       total number of trials        

= 30/75

= 0.40

Note: Remember when a fair coin is tossed and then X and Y are the only possible outcomes, and

P(X) + P(Y)

= (0.60 + 0.40)

= 1

Probability

Probability

Random Experiments

Experimental Probability

Events in Probability

Empirical Probability

Coin Toss Probability

Probability of Tossing Two Coins

Probability of Tossing Three Coins

Complimentary Events

Mutually Exclusive Events

Mutually Non-Exclusive Events

Conditional Probability

Theoretical Probability

Odds and Probability

Playing Cards Probability

Probability and Playing Cards

Probability for Rolling Two Dice

Solved Probability Problems

Probability for Rolling Three Dice








9th Grade Math

From Coin toss Probability to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. 3-digit Numbers on an Abacus | Learning Three Digit Numbers | Math

    Oct 08, 24 10:53 AM

    3-Digit Numbers on an Abacus
    We already know about hundreds, tens and ones. Now let us learn how to represent 3-digit numbers on an abacus. We know, an abacus is a tool or a toy for counting. An abacus which has three rods.

    Read More

  2. Names of Three Digit Numbers | Place Value |2- Digit Numbers|Worksheet

    Oct 07, 24 04:07 PM

    How to write the names of three digit numbers? (i) The name of one-digit numbers are according to the names of the digits 1 (one), 2 (two), 3 (three), 4 (four), 5 (five), 6 (six), 7 (seven)

    Read More

  3. Worksheets on Number Names | Printable Math Worksheets for Kids

    Oct 07, 24 03:29 PM

    Traceable math worksheets on number names for kids in words from one to ten will be very helpful so that kids can practice the easy way to read each numbers in words.

    Read More

  4. The Number 100 | One Hundred | The Smallest 3 Digit Number | Math

    Oct 07, 24 03:13 PM

    The Number 100
    The greatest 1-digit number is 9 The greatest 2-digit number is 99 The smallest 1-digit number is 0 The smallest 2-digit number is 10 If we add 1 to the greatest number, we get the smallest number of…

    Read More

  5. Missing Numbers Worksheet | Missing Numerals |Free Worksheets for Kids

    Oct 07, 24 12:01 PM

    Missing numbers
    Math practice on missing numbers worksheet will help the kids to know the numbers serially. Kids find difficult to memorize the numbers from 1 to 100 in the age of primary, we can understand the menta

    Read More