Mutually Exclusive Events

Definition of Mutually Exclusive Events:

If two events are such that they cannot occur simultaneously for any random experiment are said to be mutually exclusive events.

If X and Y are two mutually exclusive events, then X Y =

For example, events in rolling of a die are “even face” and “odd face” which are known as mutually exclusive events.

But” odd-face” and “multiple of 3” are not mutually exclusive, because when “face-3” occurs both the events “odd face” and “multiply of 3” are said to be occurred simultaneously.

We see that two simple-events are always mutually exclusive while two compound events may or may not mutually exclusive.


Addition Theorem Based on Mutually Exclusive Events:

If X and Y are two mutually exclusive events, then the probability of ‘X union Y’ is the sum of the probability of X and the probability of Y and represented as,

P(X U Y) = P(X) + P(Y)

Proof: Let E be a random experiment and N(X) be the number of frequency of the event X in E. Since X and Y are two mutually exclusive events then;

N(X U Y) = N(X) + N(Y)

or, N(X U Y)/N = N(X)/N + N(Y)/N; Dividing both the sides by N.

Now taking limit N g ∞, we get probability of

P(X U Y) = P(X) + P(Y)


Worked-out problems on probability of Mutually Exclusive Events:

1. One card is drawn from a well-shuffled deck of 52 cards. What is the probability of getting a king or an ace?

Solution:

Let X be the event of ‘getting a king’ and,

Y be the event of ‘getting an ace’

We know that, in a well-shuffled deck of 52 cards there are 4 kings and 4 aces.

Therefore, probability of getting a king from well-shuffled deck of 52 cards = P(X) = 4/52 = 1/13

Similarly, probability of getting an ace from well-shuffled deck of 52 cards = P(Y) = 4/52 = 1/13

According to the definition of mutually exclusive we know that, drawing of a well-shuffled deck of 52 cards ‘getting a king’ and ‘getting an ace’ are known as mutually exclusive events.

We have to find out P(King or ace).

So according to the addition theorem for mutually exclusive events, we get;

P(X U Y) = P(X) + P(Y)

Therefore, P(X U Y)

= 1/13 + 1/13

= (1 + 1)/13

= 2/13

Hence, probability of getting a king or an ace from a well-shuffled deck of 52 cards = 2/13


2. A bag contains 8 black pens and 2 red pens and if a pen is drawn at random. What is the probability that it is black pen or red pen?

Solution:

Let X be the event of ‘getting a black pen’ and,

Y be the event of ‘getting a red pen’.

We know that, there are 8 black pens and 2 red pens.

Therefore, probability of getting a black pen = P(X) = 8/10 = 4/5

Similarly, probability of getting a red pen = P(Y) = 2/10 = 1/5

According to the definition of mutually exclusive we know that, the event of ‘getting a black pen’ and ‘getting a red pen’ from a bag are known as mutually exclusive event.

We have to find out P(getting a black pen or getting a red pen).

So according to the addition theorem for mutually exclusive events, we get;

P(X U Y) = P(X) + P(Y)

Therefore, P(X U Y)

= 4/5 + 1/5

= 5/5

= 1

Hence, probability of getting ‘a black pen’ or ‘a red pen’ = 1

Probability

Probability

Random Experiments

Experimental Probability

Events in Probability

Empirical Probability

Coin Toss Probability

Probability of Tossing Two Coins

Probability of Tossing Three Coins

Complimentary Events

Mutually Exclusive Events

Mutually Non-Exclusive Events

Conditional Probability

Theoretical Probability

Odds and Probability

Playing Cards Probability

Probability and Playing Cards

Probability for Rolling Two Dice

Solved Probability Problems

Probability for Rolling Three Dice








9th Grade Math

From Mutually Exclusive Events to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. 3-digit Numbers on an Abacus | Learning Three Digit Numbers | Math

    Oct 08, 24 10:53 AM

    3-Digit Numbers on an Abacus
    We already know about hundreds, tens and ones. Now let us learn how to represent 3-digit numbers on an abacus. We know, an abacus is a tool or a toy for counting. An abacus which has three rods.

    Read More

  2. Names of Three Digit Numbers | Place Value |2- Digit Numbers|Worksheet

    Oct 07, 24 04:07 PM

    How to write the names of three digit numbers? (i) The name of one-digit numbers are according to the names of the digits 1 (one), 2 (two), 3 (three), 4 (four), 5 (five), 6 (six), 7 (seven)

    Read More

  3. Worksheets on Number Names | Printable Math Worksheets for Kids

    Oct 07, 24 03:29 PM

    Traceable math worksheets on number names for kids in words from one to ten will be very helpful so that kids can practice the easy way to read each numbers in words.

    Read More

  4. The Number 100 | One Hundred | The Smallest 3 Digit Number | Math

    Oct 07, 24 03:13 PM

    The Number 100
    The greatest 1-digit number is 9 The greatest 2-digit number is 99 The smallest 1-digit number is 0 The smallest 2-digit number is 10 If we add 1 to the greatest number, we get the smallest number of…

    Read More

  5. Missing Numbers Worksheet | Missing Numerals |Free Worksheets for Kids

    Oct 07, 24 12:01 PM

    Missing numbers
    Math practice on missing numbers worksheet will help the kids to know the numbers serially. Kids find difficult to memorize the numbers from 1 to 100 in the age of primary, we can understand the menta

    Read More