# Multiplying 2-Digit Number by 1-Digit Number

Here we will learn multiplying 2-digit number by 1-digit number. In two different ways we will learn to multiply a two-digit number by a one-digit number.

Examples of multiplying 2-digit number by 1-digit number without Regrouping:

We will have a quick review of multiplication of 2-digit number by 1-digit number without regrouping:

1. Multiply 24 by 2.

 T     O               2     4            ×        2               4     8 First multiply the ones by 2.4 × 2 = 8.Write 8 under O.Now multiply the tens by 2.3 × 3 = 9.Write 9 under T.

2. Multiply 34 and 2

Solution:

 Step I: Arrange the numbers vertically.Step II: First multiply the digit at the ones place by 2.2 × 4 = 8 onesStep III: Now multiply the digit at the tens place by 2. 2 × 3 = 6 tens Thus, 34 × 2 = 68

3. Multiply 20 by 3 by using expanded form

Solution:

20         →                           2 tens + 0 ones

×    3         →                                       ×      3

6 tens + 0 ones

= 60 + 0

= 60

Therefore, 20 × 3 = 60

4. Multiply 50 by 1 by using short form

Solution:

50                      →                50

×    1                      →             ×   1

0                                           50

(i) First digit of one’s place is multiplied by 1, i.e., 0 × 1 = 0

(ii) Then digit at ten’s place is multiplied by 1, i.e., 5 tens × 1 = 5 tens

Hence, 50 × 1 = 50

Observe the following Example using Three Different Methods:

5. Multiply 13 by 2.

Solution:

13 x 2 = 13 + 13 = 26

Therefore, 13 x 2 = 26.

Second Method: Using Expanded Form

Consider 13 as 10 + 3.

13 × 2 = (10 + 3) × 2

= 10 × 2 + 3 × 2

= 20 + 6

= 26.

Third Method: Short Form

Write the numbers according to place value shown on the right.

Step I:

Multiply the ones:

3 ones × 2 = 6 ones

Write 6 under ones column.

Step II:

Multiply the tens:

1 ten × 2 = 2 tens

Write 2 under tens column.

Thus, the product of 13 and 2 is 26.

Examples of multiplying 2-digit number by 1-digit number with Regrouping:

1. Multiply 66 by 3

 T     O               1               6     6            ×        3        1     4     8 First multiply the ones by 3.6 × 3 = 18 = one ten + 8 onesWrite 8 under O. carry 1 tenNow multiply the tens by 3.6 × 3 = 18Add 1 to the product.18 + 1 = 19

2. Multiply 25 by 3

 Step I: Arrange the numbers vertically.Step II: First multiply the digit at the ones place by 3.3 × 5 = 15 = 1 ten + 5 onesWrite 5 in the ones column and carry over 1 to the tens columnStep III: Now multiply the digit at the tens place by 3.3 × 2 = 6 tens Now, 6 + 1 (carry over) = 7 tens Thus, 25 × 3 = 75

3. Multiply 46 by 4

 Step I: Arrange the numbers vertically.Step II: Multiply the digit at the ones place by 4.6 × 4 = 24 = 2 tens + 4 onesWrite 4 in the ones column and carry over 2 to the tens columnStep III: Now multiply the digit at the tens place by 4.4 × 4 = 16 tensNow, 16 + 2 (carry over) = 18 tens = 1 hundred + 8 tens Write 8 at the tens place and 1 at the hundred place. Thus, 46 × 4 = 184

4. Multiply 20 by 3 by using expanded form

Solution:

20         →                           2 tens + 0 ones

×    3         →                                       ×      3

6 tens + 0 ones

= 60 + 0

= 60

Therefore, 20 × 3 = 60

5. Multiply 26 by 7 by using expanded form

Solution:

26          →       20 + 6          →           2 tens + 6 ones

×      7          →         ×   7           →                          ×     7

(2 × 7) tens + (6 × 7) ones

2 tens + 6 ones

×                  7 ones

14 tens + 42 ones

= 14 tens + (40 + 2) ones

= 14 tens + 4 tens + 2 ones

= 18 tens + 2 ones

= 180 + 2

= 182

Therefore, 26 × 7 = 182

6. Multiply 48 by 6 by using short form

Solution:

48

×         6

24 ← 48

= 28 tens 8 ones

= 288

Hence, 48 × 6 = 288

(i) 48 × 6 is written in column from.

(ii) 8 ones are multiplied by 6, i.e., 6 × 8 = 48 ones = 4 tens + 8 ones

8 is written is one’s column and 4 tens is gained.

(iii) Gained 4 is carried to the ten’s column.

(iv) Now 4 tens is multiplied by 6, i.e., 4 tens × 6 = 24 tens

(v) Carried 4 tens is added to 24 tens, i.e., 4 tens + 24 tens = 28 tens

7. Find the product of 58 × 5.

Solution:

58

×   5

25 ← 40

= 25 + 4 ← 0

= 29          0

= 290

(i) 8 ones × 5 = 40 = 4 tens + 0 one

(ii) 5 tens × 5 = 25 tens

(iii) 25 tens + 4 tens = 29 tens

Hence, 58 × 5 = 290

8. Multiply 37 by 8

Solution:

3  7

×          8

5   6

+   2   4   0

2   9    6

(i) 7 ones × 8 = 56 ones = 5 tens 6 ones

56 is placed in such way that 5 comes under tens and 6 under ones

(ii) 3 tens × 8 = 24 tens = 240 ones

= 2 hundreds, 4 tens and 0 ones

240 is placed below 56 in such way that 2 comes under hundreds, 4 under tens and 0 under ones.

Hence, 37 × 8 = 296

Questions and Answers on Multiplying 2-Digit Number by 1-Digit Number:

Multiplication of 2-Digit Number by 1-Digit Number Without Regrouping:

I. Find the product:

(i) 23 × 3 =

(ii) 44 × 2 =

(iii) 33 × 2 =

(iv) 22 × 4 =

(v) 32 × 3 =

(vi) 40 × 2 =

(vii) 43 × 2 =

(viii)  12 × 3 =

(ix) 23 × 2 =

(x) 11 × 9 =

(xi) 21 × 4 =

(xii) 13 × 3 =

I. (i) 69

(ii) 88

(iii) 66

(iv) 44

(v) 96

(vi) 80

(vii) 86

(viii) 36

(ix) 46

(x) 99

(xi) 84

(xii) 39

Multiplication of 2-Digit Number by 1-Digit Number With Regrouping:

II. Find the product:

(i) 46 × 2

(ii) 19 × 4

(iii) 27 × 3

(iv) 18 × 5

II. (i) 92

(ii) 76

(iii) 81

(iv) 90

III. Multiply the following:

(i) 78 × 4

(ii)  63 × 6

(iii) 51 × 6

(iv) 39 × 8

(v) 72 × 9

(vi) 45 × 7

(vii) 17 × 4

(viii) 88 × 8

III. (i) 312

(ii)  398

(iii) 306

(iv) 312

(v) 648

(vi) 315

(vii) 68

(viii) 704

IV. Solve the following:

(i) 37 × 6

(ii) 72 × 4

(iii) 56 × 7

(iv) 84 × 2

(v) 45 × 9

IV. (i) 37 × 6

(ii) 72 × 4

(iii) 56 × 7

(iv) 84 × 2

(v) 45 × 9

V. Multiply the following :

 (i)                    T     O                    3     1                    ×    2                  _______ (ii)                    T     O                    4     7                    ×    1                  _______
 (iii)                    T     O                    1     1                    ×    3                  _______ (iv)                    T     O                    2     2                    ×    2                  _______
 (v)                    T     O                    2     3                    ×    2                  _______ (vi)                    T     O                    2     6                    ×    3                  _______
 (vii)                    T     O                    4     9                    ×    2                  _______ (viii)                    T     O                    2     3                    ×    4                  _______
 (ix)                    T     O                    1     6                    ×    6                  _______ (x)                    T     O                    1     9                    ×    5                  _______
 (xi)                    T     O                    5     2                    ×    5                  _______ (xii)                    T     O                    2     3                    ×    6                  _______
 (xiii)                    T     O                    6     4                    ×    9                  _______ (xiv)                    T     O                    3     2                    ×    7                  _______
 (xv)                    T     O                    7     5                    ×    8                  _______

III. (i) 62

(ii) 47

(iii) 33

(iv) 44

(v) 46

(vi) 78

(vii) 98

(viii) 92

(ix) 96

(x) 95

(xi) 260

(xii) 138

(xiii) 576

(xiv) 224

(xv) 600

VI. Multiply the following:

(i) 21 × 5 = _____

(ii) 34 × 2 = _____

(iii) 23 × 3 = _____

(iv) 27 × 3 = _____

(v) 38 × 2 = _____

(vi) 18 × 4 = _____

(vii) 25 × 8 = _____

(viii) 32 × 6 = _____

(ix) 29 × 4 = _____

(x) 45 × 5 = _____

VI. (i) 105

(ii) 68

(iii) 69

(iv) 81

(v) 76

(vi) 72

(vii) 200

(viii) 192

(ix) 116

(x) 225

VII. Find the following products in your notebook.

 (i)                    T     O                    2     9                    ×    7                  _______ (ii)                    T     O                    6     3                    ×    4                  _______
 (iii)                    T     O                    3     8                    ×    7                  _______ (iv)                    T     O                    6     6                    ×    4                  _______
 (v)                    T     O                    5     4                    ×    7                  _______ (vi)                    T     O                    3     5                    ×    4                  _______
 (vii)                    T     O                    6     9                    ×    8                  _______ (viii)                    T     O                    8     5                    ×    4                  _______
 (ix)                    T     O                    8     0                    ×    4                  _______ (x)                    T     O                    5     8                    ×    8                  _______
 (xi)                    T     O                    5     1                    ×    7                  _______ (xii)                    T     O                    6     3                    ×    8                  _______

VIII. (i) 203

(ii) 252

(iii) 266

(iv) 264

(v) 378

(vi) 140

(vii) 552

(viii) 340

(ix) 320

(x) 464

(xi) 357

(xii) 504

VIII. Find the products:

(i) 27 × 4 = __________

(ii) 5 × 10 = __________

(iii) 25 × 9 = __________

(iv) 16 × 4 = __________

(v) 14 × 8 = __________

(vi) 37 × 7 = __________

(vii) 63 × 4 = __________

(viii) 2 × 70 = __________

(ix) 53 × 5 = __________

VIII. (i) 108

(ii) 50

(iii) 225

(iv) 64

(v) 112

(vi) 259

(vii) 252

(viii) 140

(ix) 265

IX. Word Problem on Multiplying 2-Digit Number by 1-Digit Number:

(i) A month has 30 days. How many days be there in 3 such months?

IX. (i) 90 days

## You might like these

• ### Adding 2-Digit Numbers | Add Two Two-Digit Numbers without Carrying

Here we will learn adding 2-digit numbers without regrouping and start working with easy numbers to get acquainted with the addition of two numbers.

• ### Adding 1-Digit Number | Understand the Concept one Digit Number

Understand the concept of adding 1-digit number with the help of objects as well as numbers.

• ### Subtracting 2-Digit Numbers | How to Subtract Two Digit Numbers?

In subtracting 2-digit numbers we will subtract or minus a two-digit number from another two-digit number. To find the difference between the two numbers we need to ‘ones from ones’ and ‘tens from

• ### Subtracting 1-Digit Number | Subtract or Minus Two One-Digit Number

In subtracting 1-digit number we will subtract or minus one-digit number from one-digit number or one-digit number from 2-digit number and find the difference between them. We know that subtraction means to take away a set of objects from a collection.

• ### Worksheet on Multiplying 1-Digit Numbers |Multiplying One Digit Number

Multiplication tables will help us to solve the worksheet on multiplying 1-digit numbers. The questions are based on multiplying one digit number and word problems on multiplying one digit number.

• ### 2nd Grade Numbers Worksheet | 3-Digit Numbers | Comparing Numbers

In 2nd Grade number Worksheet we will solve the problems on 3-digit numbers, before, after and between numbers, representation of numbers on the abacus, expanded form, place value and face value of a digit, comparing numbers, forming greatest and smallest number from the

• ### Addition of 3-Digit Numbers Without Carrying | Addition No Regrouping

Here, we will learn simple addition of 3-digit numbers without regrouping (without carrying). We add 3-digit numbers in the same way as we add 2-digit numbers.

• ### Worksheet on Place Value and Face Value | Place Value of the Digit

We will practice the questions given in the worksheet on place value and face value. In place value and face value we need to identify the digit which is highlighted whether in hundreds place

• ### Place Value and Face Value | Basic Concept on Place Value | Face Value

Learn the easiest way to understand the basic concept on place value and face value in the second grade. Suppose we write a number in figures 435 in words we write four hundred thirty five.

• ### Representation of Numbers on the Abacus | 2nd Grade Math | Abacus Math

We will learn representation of numbers on the abacus. We can show 100 on an abacus with three vertical rods. The rods represent place value of hundreds, tens and ones. We add beads on the rods to show different number. Each rod can hold up to 9 beads.

• ### One-Digit Numbers and Two-Digit Numbers | Digits |Formation of Numbers

Number 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 are called Digits. Number 1 to 9 are One-digit numbers. Numbers 10 to 99 are Two-digit numbers. The number 100 is a Three-digit number.

• ### Comparing Numbers | Compare the following Numbers | Solved Examples

Comparing numbers is important to know which number is greater and which number is smaller. Solved examples

• ### Cardinal Numbers and Ordinal Numbers | Cardinal Numbers | Ordinal Num

Cardinal numbers and ordinal numbers are explained here with the help of colorful pictures. There are many steps in a staircase as shown in the above figure. The given staircase has nine steps,

• ### 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

• ### Rupees and Paise | Paise Coins | Rupee Coins | Rupee Notes

Money consists of rupees and paise; we require money to purchase things. 100 paise make one rupee. List of paise and rupees in the shape of coins and notes:

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

## Recent Articles

1. ### Formation of Greatest and Smallest Numbers | Arranging the Numbers

May 19, 24 03:36 PM

the greatest number is formed by arranging the given digits in descending order and the smallest number by arranging them in ascending order. The position of the digit at the extreme left of a number…

2. ### Formation of Numbers with the Given Digits |Making Numbers with Digits

May 19, 24 03:19 PM

In formation of numbers with the given digits we may say that a number is an arranged group of digits. Numbers may be formed with or without the repetition of digits.

3. ### Arranging Numbers | Ascending Order | Descending Order |Compare Digits

May 19, 24 02:23 PM

We know, while arranging numbers from the smallest number to the largest number, then the numbers are arranged in ascending order. Vice-versa while arranging numbers from the largest number to the sma…

4. ### Comparison of Numbers | Compare Numbers Rules | Examples of Comparison

May 19, 24 01:26 PM

Rule I: We know that a number with more digits is always greater than the number with less number of digits. Rule II: When the two numbers have the same number of digits, we start comparing the digits…