Degree of a Polynomial

Here we will learn the basic concept of polynomial and the degree of a polynomial.


What is polynomial?

An algebraic expression which consists of one, two or more terms is called a polynomial.


How to find a degree of polynomial?

The degree of the polynomial is the greatest of the exponents (powers) of its various terms.

Examples of polynomials and its degree:

1. For polynomial 2x2 - 3x5 + 5x6.

We observe that the above polynomial has three terms. Here the first term is 2x2, the second term is -3x5 and the third term is 5x6.

Now we will determine the exponent of each term.

(i) the exponent of the first term 2x2 = 2

(ii) the exponent of the second term 3x5 = 5

(iii) the exponent of the third term 5x6 = 6

Since, the greatest exponent is 6, the degree of 2x2 - 3x5 + 5x6 is also 6.

Therefore, the degree of the polynomial 2x2 - 3x5 + 5x6 = 6.



2. Find the degree of the polynomial 16 + 8x – 12x2 + 15x3 - x4.

We observe that the above polynomial has five terms. Here the first term is 16, the second term is 8x, the third term is – 12x2, the fourth term is 15x3 and the fifth term is - x4.

Now we will determine the exponent of each term.

(i) the exponent of the first term 16 = 0

(ii) the exponent of the second term 8x = 1

(iii) the exponent of the third term – 12x2 = 2

(iv) the exponent of the fourth term 15x3 = 3

(v) the exponent of the fifth term - x4 = 4

Since, the greatest exponent is 4, the degree of 16 + 8x – 12x2 + 15x3 - x4 is also 4.

Therefore, the degree of the polynomial 16 + 8x – 12x2 + 15x3 - x4 = 4.


3. Find the degree of a polynomial 7x – 4

We observe that the above polynomial has two terms. Here the first term is 7x and the second term is -4

Now we will determine the exponent of each term.

(i) the exponent of the first term 7x = 1

(ii) the exponent of the second term -4 = 1

Since, the greatest exponent is 1, the degree of 7x – 4 is also 1.

Therefore, the degree of the polynomial 7x – 4 = 1.


4. Find the degree of a polynomial 11x3 - 13x5 + 4x.

We observe that the above polynomial has three terms. Here the first term is 11x3, the second term is - 13x5 and the third term is 4x.

Now we will determine the exponent of each term.

(i) the exponent of the first term 11x3 = 3

(ii) the exponent of the second term - 13x5 = 5

(iii) the exponent of the third term 4x = 1

Since, the greatest exponent is 5, the degree of 11x3 - 13x5 + 4x is also 5.

Therefore, the degree of the polynomial 11x3 - 13x5 + 4x = 5.



5. Find the degree of the polynomial 1 + x + x2 + x3.

We observe that the above polynomial has four terms. Here the first term is 1, the second term is x, the third term is x2 and the fourth term is x3.

Now we will determine the exponent of each term.

(i) the exponent of the first term 1 = 0

(ii) the exponent of the second term x = 1

(iii) the exponent of the third term x2 = 2

(iv) the exponent of the fourth term x3 = 3

Since, the greatest exponent is 3, the degree of 1 + x + x2 + x3 is also 3.

Therefore, the degree of the polynomial 1 + x + x2 + x3 = 3.


6. Find the degree of a polynomial -2x.

We observe that the above polynomial has one term. Here the term is -2x.

Now we will determine the exponent of the term.

(i) the exponent of the first term -2x = 1

Therefore, the degree of the polynomial -2x = 1.

Terms of an Algebraic Expression

Types of Algebraic Expressions

Degree of a Polynomial

Addition of Polynomials

Subtraction of Polynomials

Power of Literal Quantities

Multiplication of Two Monomials

Multiplication of Polynomial by Monomial

Multiplication of two Binomials

Division of Monomials






Algebra Page

6th Grade Page 

From Degree of a Polynomial to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Fundamental Geometrical Concepts | Point | Line | Properties of Lines

    Apr 18, 24 02:58 AM

    Point P
    The fundamental geometrical concepts depend on three basic concepts — point, line and plane. The terms cannot be precisely defined. However, the meanings of these terms are explained through examples.

    Read More

  2. What is a Polygon? | Simple Closed Curve | Triangle | Quadrilateral

    Apr 18, 24 02:15 AM

    What is a polygon? A simple closed curve made of three or more line-segments is called a polygon. A polygon has at least three line-segments.

    Read More

  3. Simple Closed Curves | Types of Closed Curves | Collection of Curves

    Apr 18, 24 01:36 AM

    Closed Curves Examples
    In simple closed curves the shapes are closed by line-segments or by a curved line. Triangle, quadrilateral, circle, etc., are examples of closed curves.

    Read More

  4. Tangrams Math | Traditional Chinese Geometrical Puzzle | Triangles

    Apr 18, 24 12:31 AM

    Tangrams
    Tangram is a traditional Chinese geometrical puzzle with 7 pieces (1 parallelogram, 1 square and 5 triangles) that can be arranged to match any particular design. In the given figure, it consists of o…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Apr 17, 24 01:32 PM

    Duration of Time
    We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton every evening. Yesterday, their game started at 5 : 15 p.m.

    Read More

Terms of an Algebraic Expression - Worksheet

Worksheet on Types of Algebraic Expressions

Worksheet on Degree of a Polynomial

Worksheet on Addition of Polynomials

Worksheet on Subtraction of Polynomials

Worksheet on Addition and Subtraction of Polynomials

Worksheet on Adding and Subtracting Polynomials

Worksheet on Multiplying Monomials

Worksheet on Multiplying Monomial and Binomial

Worksheet on Multiplying Monomial and Polynomial

Worksheet on Multiplying Binomials

Worksheet on Dividing Monomials