Degree of a Polynomial

Here we will learn the basic concept of polynomial and the degree of a polynomial.


What is polynomial?

An algebraic expression which consists of one, two or more terms is called a polynomial.


How to find a degree of polynomial?

The degree of the polynomial is the greatest of the exponents (powers) of its various terms.

Examples of polynomials and its degree:

1. For polynomial 2x2 - 3x5 + 5x6.

We observe that the above polynomial has three terms. Here the first term is 2x2, the second term is -3x5 and the third term is 5x6.

Now we will determine the exponent of each term.

(i) the exponent of the first term 2x2 = 2

(ii) the exponent of the second term 3x5 = 5

(iii) the exponent of the third term 5x6 = 6

Since, the greatest exponent is 6, the degree of 2x2 - 3x5 + 5x6 is also 6.

Therefore, the degree of the polynomial 2x2 - 3x5 + 5x6 = 6.



2. Find the degree of the polynomial 16 + 8x – 12x2 + 15x3 - x4.

We observe that the above polynomial has five terms. Here the first term is 16, the second term is 8x, the third term is – 12x2, the fourth term is 15x3 and the fifth term is - x4.

Now we will determine the exponent of each term.

(i) the exponent of the first term 16 = 0

(ii) the exponent of the second term 8x = 1

(iii) the exponent of the third term – 12x2 = 2

(iv) the exponent of the fourth term 15x3 = 3

(v) the exponent of the fifth term - x4 = 4

Since, the greatest exponent is 4, the degree of 16 + 8x – 12x2 + 15x3 - x4 is also 4.

Therefore, the degree of the polynomial 16 + 8x – 12x2 + 15x3 - x4 = 4.


3. Find the degree of a polynomial 7x – 4

We observe that the above polynomial has two terms. Here the first term is 7x and the second term is -4

Now we will determine the exponent of each term.

(i) the exponent of the first term 7x = 1

(ii) the exponent of the second term -4 = 1

Since, the greatest exponent is 1, the degree of 7x – 4 is also 1.

Therefore, the degree of the polynomial 7x – 4 = 1.


4. Find the degree of a polynomial 11x3 - 13x5 + 4x.

We observe that the above polynomial has three terms. Here the first term is 11x3, the second term is - 13x5 and the third term is 4x.

Now we will determine the exponent of each term.

(i) the exponent of the first term 11x3 = 3

(ii) the exponent of the second term - 13x5 = 5

(iii) the exponent of the third term 4x = 1

Since, the greatest exponent is 5, the degree of 11x3 - 13x5 + 4x is also 5.

Therefore, the degree of the polynomial 11x3 - 13x5 + 4x = 5.



5. Find the degree of the polynomial 1 + x + x2 + x3.

We observe that the above polynomial has four terms. Here the first term is 1, the second term is x, the third term is x2 and the fourth term is x3.

Now we will determine the exponent of each term.

(i) the exponent of the first term 1 = 0

(ii) the exponent of the second term x = 1

(iii) the exponent of the third term x2 = 2

(iv) the exponent of the fourth term x3 = 3

Since, the greatest exponent is 3, the degree of 1 + x + x2 + x3 is also 3.

Therefore, the degree of the polynomial 1 + x + x2 + x3 = 3.


6. Find the degree of a polynomial -2x.

We observe that the above polynomial has one term. Here the term is -2x.

Now we will determine the exponent of the term.

(i) the exponent of the first term -2x = 1

Therefore, the degree of the polynomial -2x = 1.

Terms of an Algebraic Expression

Types of Algebraic Expressions

Degree of a Polynomial

Addition of Polynomials

Subtraction of Polynomials

Power of Literal Quantities

Multiplication of Two Monomials

Multiplication of Polynomial by Monomial

Multiplication of two Binomials

Division of Monomials






Algebra Page

6th Grade Page 

From Degree of a Polynomial to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. 3-digit Numbers on an Abacus | Learning Three Digit Numbers | Math

    Oct 08, 24 10:53 AM

    3-Digit Numbers on an Abacus
    We already know about hundreds, tens and ones. Now let us learn how to represent 3-digit numbers on an abacus. We know, an abacus is a tool or a toy for counting. An abacus which has three rods.

    Read More

  2. Names of Three Digit Numbers | Place Value |2- Digit Numbers|Worksheet

    Oct 07, 24 04:07 PM

    How to write the names of three digit numbers? (i) The name of one-digit numbers are according to the names of the digits 1 (one), 2 (two), 3 (three), 4 (four), 5 (five), 6 (six), 7 (seven)

    Read More

  3. Worksheets on Number Names | Printable Math Worksheets for Kids

    Oct 07, 24 03:29 PM

    Traceable math worksheets on number names for kids in words from one to ten will be very helpful so that kids can practice the easy way to read each numbers in words.

    Read More

  4. The Number 100 | One Hundred | The Smallest 3 Digit Number | Math

    Oct 07, 24 03:13 PM

    The Number 100
    The greatest 1-digit number is 9 The greatest 2-digit number is 99 The smallest 1-digit number is 0 The smallest 2-digit number is 10 If we add 1 to the greatest number, we get the smallest number of…

    Read More

  5. Missing Numbers Worksheet | Missing Numerals |Free Worksheets for Kids

    Oct 07, 24 12:01 PM

    Missing numbers
    Math practice on missing numbers worksheet will help the kids to know the numbers serially. Kids find difficult to memorize the numbers from 1 to 100 in the age of primary, we can understand the menta

    Read More

Terms of an Algebraic Expression - Worksheet

Worksheet on Types of Algebraic Expressions

Worksheet on Degree of a Polynomial

Worksheet on Addition of Polynomials

Worksheet on Subtraction of Polynomials

Worksheet on Addition and Subtraction of Polynomials

Worksheet on Adding and Subtracting Polynomials

Worksheet on Multiplying Monomials

Worksheet on Multiplying Monomial and Binomial

Worksheet on Multiplying Monomial and Polynomial

Worksheet on Multiplying Binomials

Worksheet on Dividing Monomials