Subscribe to our YouTube channel for the latest videos, updates, and tips.


Addition of Polynomials

Addition of polynomials can be solved in two methods.

(i) By arranging the like terms together and then add.

For example:

1. Add: 5x + 3y, 4x – 4y + z and -3x + 5y + 2z

First we need to write in the addition form.

Thus, the required addition

= (5x + 3y) + (4x – 4y + z) + (-3x + 5y + 2z)

= 5x + 3y + 4x – 4y + z - 3x + 5y + 2z

Now we need to arrange all the like terms and then all the like terms are added.

= 5x + 4x - 3x + 3y – 4y + 5y + z + 2z

= 6x + 4y + 3z



2. Add: 3a2 + ab – b2, -a2 + 2ab + 3b2 and 3a2 – 10ab + 4b2

First we need to write in the addition form.

Thus, the required addition

= (3a2 + ab – b2) + (-a2 + 2ab + 3b2) + (3a2 – 10ab + 4b2)

= 3a2 + ab – b2 - a2 + 2ab + 3b2 + 3a2 – 10ab + 4b2

Here, we need to arrange the like terms and then add

= 3a2 - a2 + 3a2 + ab + 2ab – 10ab – b2 + 3b2 + 4b2

= 5a2 – 7ab + 6b2


(ii) By arranging expressions in lines so that the like terms with their signs are one below the other i.e. like terms are in same vertical column and then add the different groups of like terms.

For example:

1. Add: 7a + 5b, 6a – 6b + 3c and -5a + 7b + 4c

Addition of Polynomials

First we will arrange the three expressions one below the other, placing the like terms in the same column.

Now the like terms are added by adding their coefficients with their signs.

Therefore, adding 7a + 5b, 6a – 6b + 3c and -5a + 7b + 4c is 8a + 6b + 7c.


2. Add: 3x3 – 5x2 + 8x + 10, 15x3 – 6x – 23, 9x2 – 4x + 15 and -8x3 + 2x2 – 7x.
Polynomials Addition


First we will arrange the like terms in the vertical column and then the like terms are added by adding their coefficients with their signs.

Therefore, adding 3x3 – 5x2 + 8x + 10, 15x3 – 6x – 23, 9x2 – 4x + 15 and -8x3 + 2x2 – 7x is 10x3 + 6x2 – 9x + 2.

Thus, we have learnt how to solve addition of polynomials in both the methods.

Terms of an Algebraic Expression

Types of Algebraic Expressions

Degree of a Polynomial

Addition of Polynomials

Subtraction of Polynomials

Power of Literal Quantities

Multiplication of Two Monomials

Multiplication of Polynomial by Monomial

Multiplication of two Binomials

Division of Monomials







6th Grade Math Practice

From Addition of Polynomials to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Circle Worksheet | Free Worksheet with Answer |Practice Math

    Jul 10, 25 11:41 AM

    Radii of the circRadii, Chords, Diameters, Semi-circles
    In 5th Grade Circle Worksheet you will get different types of questions on parts of a circle, relation between radius and diameter, interior of a circle, exterior of a circle and construction of circl…

    Read More

  2. Construction of a Circle | Working Rules | Step-by-step Explanation |

    Jul 09, 25 01:29 AM

    Parts of a Circle
    Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jul 08, 25 02:32 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Addition & Subtraction Together |Combination of addition & subtraction

    Jul 08, 25 02:23 PM

    Addition and Subtraction Together Problem
    We will solve the different types of problems involving addition and subtraction together. To show the problem involving both addition and subtraction, we first group all the numbers with ‘+’ and…

    Read More

  5. 5th Grade Circle | Radius, Interior and Exterior of a Circle|Worksheet

    Jul 08, 25 09:55 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More

Terms of an Algebraic Expression - Worksheet

Worksheet on Types of Algebraic Expressions

Worksheet on Degree of a Polynomial

Worksheet on Addition of Polynomials

Worksheet on Subtraction of Polynomials

Worksheet on Addition and Subtraction of Polynomials

Worksheet on Adding and Subtracting Polynomials

Worksheet on Multiplying Monomials

Worksheet on Multiplying Monomial and Binomial

Worksheet on Multiplying Monomial and Polynomial

Worksheet on Multiplying Binomials

Worksheet on Dividing Monomials