Processing math: 100%

Condition of Perpendicularity

We will discuss here about the condition of perpendicularity of two straight lines.

Let the lines AB and CD be perpendicular to each other. If the inclination of AB with the positive direction of the x-axis is θ then the inclination of CD with the positive direction of the x-axis will be 90° + θ.

Therefore, the slope of AB = tan θ, and

the slope of CD = tan (90° + θ).

From trigonometry, we have, tan (90° + θ) = - cot θ

Therefore, if the slope of AB is m1 and

the slope CD = m2 then 

m1 = tan θ and m2 = - cot θ.

So, m1 ∙ m2 = tan θ ∙ (- cot θ) = -1

Two lines with slopes m1 and m2 are perpendicular to each other if and only if m1 ∙ m2 = -1

Note: (i) By the definition, the x-axis is perpendicular to the y-axis.

(ii) By definition, any line parallel to the x-axis is perpendicular to any line parallel to the y-axis.

(iii) If the slope of a line is m then any line perpendicular to it will have the slope 1m (i.e., negative reciprocal of m).

 

Solved example on Condition of perpendicularity of two lines:

Find the equation of the line passing through the point (-2, 0) and perpendicular to the line 4x – 3y = 2.

Solution:

First we need to express the given equation in the form y = mx + c.

Given equation is 4x – 3y = 2.

-3y = -4x + 2

y = 43x - 23

Therefore, the slope (m) of the given line = 43

Let the slope of the required line be m1.

According to the problem the required line is perpendicular to the given line.

Therefore, from the condition of perpendicularity we get,

m143 = -1

⟹ m1 = -34

Thus, the required line has the slope -34 and it passes through the point (-2, 0).

Therefore, using the point-slope form we get

y - 0 = -34{x - (-2)}

⟹ y = -34(x + 2)

⟹ 4y = -3(x + 2)

⟹ 4y = -3x + 6

⟹ 3x + 4y + 6 = 0, which is the required equation.

 Equation of a Straight Line







10th Grade Math

From Condition of Perpendicularity of Two Straight Lines to HOME




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Pie Chart | Definition of Pie Chart | Construction |Examples

    Jul 31, 25 05:12 PM

    Pie Chart Circle
    Data can also be represented in a circle. This method, to represent data, is called a pie chart. Let us understand this method with the help of an example.

    Read More

  2. Frequency Distribution |Tally Marks |Frequency Distribution Table

    Jul 31, 25 12:23 PM

    Frequency Table
    What is frequency distribution?The number of times a particular observation occurs in a given data is called its frequency. In 7ᵗʰ grade and 8ᵗʰ grade frequency distribution,

    Read More

  3. 5th Grade Bar Graph | Definition | Interpret Bar Graphs|Free Worksheet

    Jul 31, 25 05:16 AM

    Draw a Vertical Bar Graph
    We learn how to represent the data on the bar graph. Data can be represented by bars (like rectangle) whose lengths represent numerical values. One can use horizontal or vertical bars. Instead of rect…

    Read More

  4. Construction of Bar Graphs | Examples on Construction of Column Graph

    Jul 31, 25 03:35 AM

    What is Bar Graph?
    Now we will discuss about the construction of bar graphs or column graph. In brief let us recall about, what is bar graph? Bar graph is the simplest way to represent a data. In consists of rectangular…

    Read More

  5. Successor and Predecessor | Successor of a Whole Number | Predecessor

    Jul 29, 25 12:59 AM

    Successor and Predecessor
    The number that comes just before a number is called the predecessor. So, the predecessor of a given number is 1 less than the given number. Successor of a given number is 1 more than the given number…

    Read More