Subscribe to our YouTube channel for the latest videos, updates, and tips.


Triangle on Same Base and between Same Parallels

Triangle on same base and between same parallels is equal in area.

In the adjoining figure, ∆ABD and ∆DEF are having equal base ‘a cm’ and are between the same parallels BF and AD.

Triangle on Same Base and between Same Parallels






Therefore, area of ∆ABD = Area of ∆DEF


Prove that the triangles on same base and between same parallels are equal in area.

Let ∆ABC and ∆ABD be on the same base AB and between the same parallel AB and CD. It is require to prove that ∆ABC = ∆ABD.

Construction: A parallelogram ABPQ is constructed with AB as base and lying between the same parallels AB and CD.

Triangles on Same Base and between Same Parallels






Proof: Since ∆ABC and parallelogram ABPQ are on the same base AB and between the same parallels AB and Q,

Therefore, ∆ABC = ½(Parallelogram ABPQ)

Similarly, ∆ABD = ½(Parallelogram ABPQ)

Therefore, ∆ABC = ∆ABD.

Note: Since the relationship between the areas of a triangle and a parallelogram on the same base and between the same parallels in known to us, so that parallelogram ABPQ is constructed]


Solved examples for the triangle on same base and between same parallels:

1. Shaw that the medians of the triangle divide it into triangles of equal area.

Solution:  

Triangle on Same Base






AD is the median of the ∆ABC and AE is the altitude of ∆ABC and also ∆ADC.

(AE ┴ BC)

AD is the median of ABC              

Therefore, BD = DC

Multiply both sides by AE,           

Then BD × AE = DC × AE                

1/2 BD × AE = 1/2 DC × AE              

Area of ∆ABD = Area of ∆ADC   


2. AD is the median of ∆ABC and ∆ADC. E is any point on AD. Show that area of ∆ABE = area of ∆ACE.

Solution:

Solved Examples for the Triangle on Same Base






Since, AD is the median of ∆ABC, therefore BD = DC

Since, ∆ABD and ∆ADC have equal bases BD = DC and are between the same parallels BC and l,

Therefore Area of ∆ABD = Area of ∆ADC

Since, E lies on AD,

Therefore, ED is the median of the BEC

Now, BED and CED have equal bases BD = DC and between the same parallels BC and m.

Therefore, area of ∆BED = Area of ∆CED

On subtracting (1) and (2), we get

Area of ∆ABD - Area of ∆BED = Area of ∆ACD - Area of ∆CED

Area of ∆ABE = Area of ∆ACE

Figure on Same Base and between Same Parallels

Parallelograms on Same Base and between Same Parallels

Parallelograms and Rectangles on Same Base and between Same Parallels

Triangle and Parallelogram on Same Base and between Same Parallels

Triangle on Same Base and between Same Parallels






8th Grade Math Practice

From Triangle on Same Base and between Same Parallels to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Average | Word Problem on Average | Questions on Average

    May 17, 25 05:37 PM

    In worksheet on average interest we will solve 10 different types of question. Find the average of first 10 prime numbers. The average height of a family of five is 150 cm. If the heights of 4 family

    Read More

  2. How to Find the Average in Math? | What Does Average Mean? |Definition

    May 17, 25 04:04 PM

    Average 2
    Average means a number which is between the largest and the smallest number. Average can be calculated only for similar quantities and not for dissimilar quantities.

    Read More

  3. Problems Based on Average | Word Problems |Calculating Arithmetic Mean

    May 17, 25 03:47 PM

    Here we will learn to solve the three important types of word problems based on average. The questions are mainly based on average or mean, weighted average and average speed.

    Read More

  4. Rounding Decimals | How to Round a Decimal? | Rounding off Decimal

    May 16, 25 11:13 AM

    Round off to Nearest One
    Rounding decimals are frequently used in our daily life mainly for calculating the cost of the items. In mathematics rounding off decimal is a technique used to estimate or to find the approximate

    Read More

  5. Worksheet on Rounding Off Number | Rounding off Number | Nearest 10

    May 15, 25 05:12 PM

    In worksheet on rounding off number we will solve 10 different types of problems. 1. Round off to nearest 10 each of the following numbers: (a) 14 (b) 57 (c) 61 (d) 819 (e) 7729 2. Round off to

    Read More

Worksheet on Same Base and Same Parallels