Parallelograms on Same Base and between Same Parallels

Parallelograms on same base and between same parallels have same area.


In the adjoining figure, ABCD and BCEF are the two parallelograms on the same base BC and between the parallels BC and AE.

Parallelograms on Same Base and between Same Parallels

Therefore, area of parallelogram ABCD = Area of parallelogram BCEF.


Explanation:

Draw a parallelogram ABCD on a thick sheet of paper or a cardboard sheet.

Now, draw a line segment DE as shown in the figure.

Same Parallels






Next, cut a triangle A’D’E’ congruent to triangle ADE in a separate sheet with the help of a tracing paper and place ∆ A’D’E’ in such a way that A’D’ coincides with BC as shown in adjoining figure.

Two Parallelograms






Note that there are two parallelograms ABCD and EE’CD on the same base DC and between the same parallels AE’ and DC. What can you say about their areas?

As                                       ∆ADE ≅ ∆ A’ D’ E’

Therefore                             Area (ADE) = Area (A’ D’ E’)

Also                                    Area (ABCD) = Area (ADE) + Area (EBCD)

                                                             = Area (A’D’E’) + Area (EBCD)

                                                             = Area (EE’CD)

So, the two parallelograms are equal in area.


Solved Example:

Parallelograms ABCD and ABEF are situated on the opposite sides of AB in such a way that D, A, F are not collinear. Prove that DCEF is a parallelogram, and parallelogram ABCD + parallelogram ABEF = parallelogram DCEF.

Construction: D, F and C, E are joined.

Parallelograms on Same Base






Proof: AB and DC are two opposite sides of parallelogram ABCD,

Therefore, AB ∥ DC and AB = DC

Again, AB and EF are two opposite sides of parallelogram ABEF

Therefore, AB ∥ EF and AB ∥ EF

Therefore, DC ∥ EF and DC = EF

Therefore, DCEF is a parallelogram.

Therefore, ∆ADF and ∆BCE, we get

AD = BC (opposite sides of parallelogram ABCD)

AF = BE (opposite sides of parallelogram ABEF)

And DF = CE (opposite sides of parallelogram CDEF)

Therefore, ∆ADF ≅ ∆BCE (side – side – side)

Therefore, ∆ADF = ∆BCE

Therefore, polygon AFECD - ∆BCE = polygon AFCED - ∆ADF

Parallelogram ABCD +  Parallelogram ABEF = Parallelogram DCEF

Figure on Same Base and between Same Parallels

Parallelograms on Same Base and between Same Parallels

Parallelograms and Rectangles on Same Base and between Same Parallels

Triangle and Parallelogram on Same Base and between Same Parallels

Triangle on Same Base and between Same Parallels






8th Grade Math Practice

From Parallelograms on Same Base and between Same Parallels to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on 10 Times Table | Printable Multiplication Table | Video

    Mar 21, 25 03:46 PM

    worksheet on multiplication of 10 times table
    Worksheet on 10 times table can be printed out. Homeschoolers can also use these multiplication table sheets to practice at home.

    Read More

  2. 5th Grade Prime and Composite Numbers | Definitions | Examples | Math

    Mar 21, 25 12:18 AM

    5th grade prime and composite numbers

    Read More

  3. 14 Times Table | Read and Write Multiplication Table of 14| Video

    Mar 20, 25 04:03 PM

    14 Times Table
    In 14 times table we will learn how to read and write multiplication table of 14. We read fourteen times table as:One time fourteen is 14 Two times fourteen are 28 Three times fourteen are 42

    Read More

  4. 5th Grade Test of Divisibility Rules | Divisibility Rules From 2 to 12

    Mar 20, 25 04:00 PM

    In 5th grade test of divisibility rules we will learn about the exact divisibility of a number by the numbers from 2 to 12. The digit in the ones place should be 2, 4, 6, 8 or 0.

    Read More

  5. 5th Grade Even and Odd Numbers | Definitions | Examples

    Mar 20, 25 02:45 AM

    Numbers which are exactly divisible by 2 are even numbers. For example. 2,4,6,8,20,48,88, etc. are even numbers. They are multiples of 2. Numbers which are not exactly divisible by 2 are odd numbers…

    Read More

Worksheet on Same Base and Same Parallels