Theorems on Straight Lines and Plane

Here we will discuss about the theorems on straight lines and plane using step-by-step explanation on how to proof the theorem.

Theorem: If a straight line is perpendicular to each of two intersecting straight lines at their point of intersection, it is also perpendicular to the plane in which they lie.

Let the straight line OP be perpendicular to each of two intersecting straight lines OM and ON at their point of intersection O and XY be the plane in which OM and ON lie. We are to prove that the straight line OP is perpendicular to the plane XY.

theorems on straight lines and plane


Construction: Through O draw any straight line OC in the XY plane and take any point C on it. Now, complete the parallelogram OACB in the XY plane by drawing lines CB and CA parallel to OM and ON respectively. Join AB, which cuts OC at D. Join PA, PB and PD. 


Proof: Since OACB is a parallelogram and its two diagonals AB and OC intersect at D, hence D is the mid-point of AB (Since, diagonals of a parallelogram bisect each other). 

Therefore, PD is a median of the triangle APB; hence, by Apollonius theorem we get, 

AP² + BP² = 2 (AD² + PD²) . . . (1) 

Again, OC is a median of the triangle OAB; hence, by the same theorem we get, 

OA² + OB² = 2 (AD² + OD²) . . . (2)

Subtracting (2) from (1) we get,

(AP² - OA² ) + (BP² - OB² ) = 2 (PD² - OD² ) . . . (3)

Now, OP is perpendicular to both OA and OB.

Therefore, AP² = OA² + OP²

or, AP² – OA² = OP² . . . (4)

and BP² = OB² + OP ²

or, BP ² - OB² = OP² . . . (5)

From (3), (4) and (5) we get,

OP² + OP² = 2 (PD² - OD²)

or, 2. OP ² = 2 (PD² - OD²)

or, OP ² = PD² - OD²

or, OP ² + OD² = PD²

Therefore, ∠POD (i.e., ∠POC) is a right angle. 

Therefore, OP is perpendicular to OC at O. But OC is any straight line through O in the plane XY. Therefore, OP is perpendicular to the plane XY at O.

Examples:

1. O is a point in the plane of the triangle ABC; if X be a point outside the plane such that PO is perpendicular to both OA and OB and if XA = XB = XC, show that O is the circum-centre of the triangle ABC.

point in the plane

Since XO is perpendicular to both OA and OB at their point of intersection O, hence, XO is perpendicular to the plane of the triangle ABC. Therefore, XO is perpendicular to OC.

Now, in triangles XOA and POB we have

XA = XB (given), XO is common and ∠XOA = ∠XOB (each being a right angle)

Therefore, triangles XOA and XOB are congruent.

Therefore, OA = OB . . . (1)

Similarly, in triangles XOA and XOC we have,

XA = XC (given), XO is common and ∠XOA = ∠XOC = 1 rt. angle.

Therefore, triangles POA and POC are congruent

Therefore, OA = OC . . . (2)

From (1) and (2) we get, OA = OB = OC

Therefore, O is the circum-centre of the triangle ABC.



2. The straight line PQ is perpendicular to a plane ; in this plane the straight line QT is perpendicular to a straight line RS at T. Show that RT is perpendicular to the plane containing PT and QT. 

perpendicular to the plane

Let PQ be perpendicular to the plane XY at Q. In XY plane, draw QT perpendicular to a straight line RQ, T being the foot of the perpendicular. Join PR, QR and PT.

It is required to prove that RT is perpendicular to the plane containing PT and QT.

Since PQ is perpendicular to the plane XY and the lines QR and QT lie in this plane, hence PQ is perpendicular to both QR and QT. Therefore, from the right-angled △ PQR we get, 

PQ² + QR² = PR²

or, PQ² = PR² - QR² . . . (1)

Again, from the right-angled △ PQT we get,

QT² = PQ² + QT² = PR² – QR² + QT² [using (1)]

= PR² - (QR² - QT²)

= PR² - RT²

[Since, QT ⊥ RT Therefore QR² = QT² + RT² or, QR² – QT² = RT²] Or, TR ² = QT ² + RT²

Therefore, PT ⊥ RT i.e., RT is perpendicular to PT.

Again, RT is perpendicular to QT (given). Thus, RT is perpendicular to both PT and QT.

Therefore, RT is perpendicular to the place containing PT and QT.


3. ABC is a triangle right – angled at C.P is a point outside the plane ABC such that PA = PB = PC. If D be the mid-point of AB, prove that PD is perpendicular to CD. Show also that PD is perpendicular to the plane of the triangle ABC.

plane containing

By question ACB = 1 rt and D is the mid-point of the hypotenuse AB in ABC. 

Therefore, AD = BD = CD.

Now, in triangle PDA and PDB we have

PA = PB (given), AD = BD and PD is common. Therefore, the triangle is congruent.

Therefore PDA = PDB = ½ ∙ 2 rt. Angles

= 1 rt. Angle.

i.e., PD is perpendicular to DA

Again, in triangle PDA and PDC we have,

PA = PC (given), AD = DC and PD is common.

Therefore, the triangles are congruent.

Therefore, PDC = PDA = 1 rt. Angle.

i.e., PD is perpendicular to DC.

Therefore, PD is perpendicular to both DA and CD i.e., PD is perpendicular to the plane containing DA and DC i.e., it is perpendicular to the plane of the triangle ABC. 


 Geometry








11 and 12 Grade Math 

From Theorems on Straight Lines and Plane to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Multiplying 3-Digit Number by 1-Digit Number | Three-Digit Multiplicat

    Oct 22, 24 03:26 PM

    Multiplying 3-Digit Number by 1-Digit Number
    Here we will learn multiplying 3-digit number by 1-digit number. In two different ways we will learn to multiply a two-digit number by a one-digit number. 1. Multiply 201 by 3 Step I: Arrange the numb…

    Read More

  2. Word Problems on Multiplication |Multiplication Word Problem Worksheet

    Oct 22, 24 01:23 AM

    Multiplication Word Problem
    Word problems on multiplication for fourth grade students are solved here step by step. Problem Sums Involving Multiplication: 1. 24 folders each has 56 sheets of paper inside them. How many sheets of…

    Read More

  3. Worksheet on Word Problems on Multiplication | Multiplication Problems

    Oct 22, 24 12:31 AM

    In worksheet on word problems on multiplication, all grade students can practice the questions on word problems involving multiplication. This exercise sheet on word problems on multiplication

    Read More

  4. Multiplying 2-Digit Number by 1-Digit Number | Multiply Two-Digit Numb

    Oct 21, 24 03:38 PM

    Multiplying 2-Digit Number by 1-Digit Number
    Here we will learn multiplying 2-digit number by 1-digit number. In two different ways we will learn to multiply a two-digit number by a one-digit number. Examples of multiplying 2-digit number by

    Read More

  5. Multiplication Table of 4 |Read and Write the Table of 4|4 Times Table

    Oct 21, 24 02:26 AM

    Multiplication Table of Four
    Repeated addition by 4’s means the multiplication table of 4. (i) When 5 candle-stands having four candles each. By repeated addition we can show 4 + 4 + 4 + 4 + 4 = 20 Then, four 5 times

    Read More