Theorems on Straight Lines and Plane

Here we will discuss about the theorems on straight lines and plane using step-by-step explanation on how to proof the theorem.

Theorem: If a straight line is perpendicular to each of two intersecting straight lines at their point of intersection, it is also perpendicular to the plane in which they lie.

Let the straight line OP be perpendicular to each of two intersecting straight lines OM and ON at their point of intersection O and XY be the plane in which OM and ON lie. We are to prove that the straight line OP is perpendicular to the plane XY.

theorems on straight lines and plane


Construction: Through O draw any straight line OC in the XY plane and take any point C on it. Now, complete the parallelogram OACB in the XY plane by drawing lines CB and CA parallel to OM and ON respectively. Join AB, which cuts OC at D. Join PA, PB and PD. 


Proof: Since OACB is a parallelogram and its two diagonals AB and OC intersect at D, hence D is the mid-point of AB (Since, diagonals of a parallelogram bisect each other). 

Therefore, PD is a median of the triangle APB; hence, by Apollonius theorem we get, 

AP² + BP² = 2 (AD² + PD²) . . . (1) 

Again, OC is a median of the triangle OAB; hence, by the same theorem we get, 

OA² + OB² = 2 (AD² + OD²) . . . (2)

Subtracting (2) from (1) we get,

(AP² - OA² ) + (BP² - OB² ) = 2 (PD² - OD² ) . . . (3)

Now, OP is perpendicular to both OA and OB.

Therefore, AP² = OA² + OP²

or, AP² – OA² = OP² . . . (4)

and BP² = OB² + OP ²

or, BP ² - OB² = OP² . . . (5)

From (3), (4) and (5) we get,

OP² + OP² = 2 (PD² - OD²)

or, 2. OP ² = 2 (PD² - OD²)

or, OP ² = PD² - OD²

or, OP ² + OD² = PD²

Therefore, ∠POD (i.e., ∠POC) is a right angle. 

Therefore, OP is perpendicular to OC at O. But OC is any straight line through O in the plane XY. Therefore, OP is perpendicular to the plane XY at O.

Examples:

1. O is a point in the plane of the triangle ABC; if X be a point outside the plane such that PO is perpendicular to both OA and OB and if XA = XB = XC, show that O is the circum-centre of the triangle ABC.

point in the plane

Since XO is perpendicular to both OA and OB at their point of intersection O, hence, XO is perpendicular to the plane of the triangle ABC. Therefore, XO is perpendicular to OC.

Now, in triangles XOA and POB we have

XA = XB (given), XO is common and ∠XOA = ∠XOB (each being a right angle)

Therefore, triangles XOA and XOB are congruent.

Therefore, OA = OB . . . (1)

Similarly, in triangles XOA and XOC we have,

XA = XC (given), XO is common and ∠XOA = ∠XOC = 1 rt. angle.

Therefore, triangles POA and POC are congruent

Therefore, OA = OC . . . (2)

From (1) and (2) we get, OA = OB = OC

Therefore, O is the circum-centre of the triangle ABC.



2. The straight line PQ is perpendicular to a plane ; in this plane the straight line QT is perpendicular to a straight line RS at T. Show that RT is perpendicular to the plane containing PT and QT. 

perpendicular to the plane

Let PQ be perpendicular to the plane XY at Q. In XY plane, draw QT perpendicular to a straight line RQ, T being the foot of the perpendicular. Join PR, QR and PT.

It is required to prove that RT is perpendicular to the plane containing PT and QT.

Since PQ is perpendicular to the plane XY and the lines QR and QT lie in this plane, hence PQ is perpendicular to both QR and QT. Therefore, from the right-angled △ PQR we get, 

PQ² + QR² = PR²

or, PQ² = PR² - QR² . . . (1)

Again, from the right-angled △ PQT we get,

QT² = PQ² + QT² = PR² – QR² + QT² [using (1)]

= PR² - (QR² - QT²)

= PR² - RT²

[Since, QT ⊥ RT Therefore QR² = QT² + RT² or, QR² – QT² = RT²] Or, TR ² = QT ² + RT²

Therefore, PT ⊥ RT i.e., RT is perpendicular to PT.

Again, RT is perpendicular to QT (given). Thus, RT is perpendicular to both PT and QT.

Therefore, RT is perpendicular to the place containing PT and QT.


3. ABC is a triangle right – angled at C.P is a point outside the plane ABC such that PA = PB = PC. If D be the mid-point of AB, prove that PD is perpendicular to CD. Show also that PD is perpendicular to the plane of the triangle ABC.

plane containing

By question ACB = 1 rt and D is the mid-point of the hypotenuse AB in ABC. 

Therefore, AD = BD = CD.

Now, in triangle PDA and PDB we have

PA = PB (given), AD = BD and PD is common. Therefore, the triangle is congruent.

Therefore PDA = PDB = ½ ∙ 2 rt. Angles

= 1 rt. Angle.

i.e., PD is perpendicular to DA

Again, in triangle PDA and PDC we have,

PA = PC (given), AD = DC and PD is common.

Therefore, the triangles are congruent.

Therefore, PDC = PDA = 1 rt. Angle.

i.e., PD is perpendicular to DC.

Therefore, PD is perpendicular to both DA and CD i.e., PD is perpendicular to the plane containing DA and DC i.e., it is perpendicular to the plane of the triangle ABC. 


 Geometry








11 and 12 Grade Math 

From Theorems on Straight Lines and Plane to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

    Dec 13, 24 08:43 AM

    Complete the Series Patterns
    We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…

    Read More

  2. Patterns in Math | Missing Number | Counting Numbers | Worksheets

    Dec 13, 24 12:31 AM

    Finding patterns in math is very important to understand the sequence in the series. We need to find the exact missing number that from the group of numbers. The counting numbers may be counting

    Read More

  3. Concept of Pattern | Similar Patterns in Mathematics | Similar Pattern

    Dec 12, 24 11:22 PM

    Patterns in Necklace
    Concept of pattern will help us to learn the basic number patterns and table patterns. Animals such as all cows, all lions, all dogs and all other animals have dissimilar features. All mangoes have si…

    Read More

  4. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 12, 24 10:31 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  5. Types of Lines |Straight Lines|Curved Lines|Horizontal Lines| Vertical

    Dec 09, 24 10:39 PM

    Types of Lines
    What are the different types of lines? There are two different kinds of lines. (i) Straight line and (ii) Curved line. There are three different types of straight lines. (i) Horizontal lines, (ii) Ver…

    Read More