Symmetric Relation on Set

Here we will discuss about the symmetric relation on set.

Let A be a set in which the relation R defined. Then R is said to be a symmetric relation, if (a, b) ∈ R ⇒ (b, a) ∈ R, that is, aRb ⇒ bRa for all (a, b) ∈ R.

Consider, for example, the set A of natural numbers. If a relation A be defined by “x + y = 5”, then this relation is symmetric in A, for

a + b = 5 ⇒ b + a = 5

But in the set A of natural numbers if the relation R be defined as ‘x is a divisor of y’, then the relation R is not symmetric as 3R9 does not imply 9R3; for, 3 divides 9 but 9 does not divide 3.

For a symmetric relation R, R\(^{-1}\) = R.

Solved example on symmetric relation on set:

1. A relation R is defined on the set Z by “a R b if a – b is divisible by 5” for a, b ∈ Z. Examine if R is a symmetric relation on Z.


Let a, b ∈ Z and aRb hold. Then a – b is divisible by 5 and therefore b – a is divisible by 5.

Thus, aRb ⇒ bRa and therefore R is symmetric.

2. A relation R is defined on the set Z (set of all integers) by “aRb if and only if 2a + 3b is divisible by 5”, for all a, b ∈ Z. Examine if R is a symmetric relation on Z.


Let a, b ∈ Z and aRb holds i.e., 2a + 3a = 5a, which is divisible by 5. Now, 2a + 3a = 5a – 2a + 5b – 3b = 5(a + b) – (2a + 3b) is also divisible by 5.

Therefore aRa holds for all a in Z i.e. R is reflexive.

3. Let R be a relation on Q, defined by R = {(a, b) : a, b ∈ Q and a – b ∈ Z}. Show that R is Symmetric relation.


Given R = {(a, b) : a, b ∈ Q, and a – b ∈ Z}.

Let ab ∈ R ⇒ (a – b) ∈ Z, i.e. (a – b) is an integer.

               ⇒ -(a – b) is an integer

               ⇒ (b – a) is an integer

               ⇒ (b, a) ∈ R

Thus, (a, b) ∈ R ⇒ (b, a) ∈ R

Therefore, R is symmetric.

4. Let m be given fixed positive integer.

Let R = {(a, a) : a, b  ∈ Z and (a – b) is divisible by m}.

Show that R is symmetric relation.


Given R = {(a, b) : a, b ∈ Z, and (a – b) is divisible by m}.

Let ab ∈ R . Then,

     ab ∈ R ⇒ (a – b) is divisible by m

               ⇒ -(a – b) is divisible by m

               ⇒ (b – a) is divisible by m

               ⇒ (b, a) ∈ R

Thus, (a, b) ∈ R ⇒ (b, a) ∈ R

Therefore, R is symmetric relation on set Z.

Set Theory


Representation of a Set

Types of Sets

Pairs of Sets


Practice Test on Sets and Subsets

Complement of a Set

Problems on Operation on Sets

Operations on Sets

Practice Test on Operations on Sets

Word Problems on Sets

Venn Diagrams

Venn Diagrams in Different Situations

Relationship in Sets using Venn Diagram

Examples on Venn Diagram

Practice Test on Venn Diagrams

Cardinal Properties of Sets

7th Grade Math Problems

8th Grade Math Practice

From Symmetric Relation on Set to HOME PAGE

New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

Share this page: What’s this?

Recent Articles

  1. Method of H.C.F. |Highest Common Factor|Factorization &Division Method

    Apr 13, 24 05:12 PM

    HCF by Short Division Method
    We will discuss here about the method of h.c.f. (highest common factor). The highest common factor or HCF of two or more numbers is the greatest number which divides exactly the given numbers. Let us…

    Read More

  2. Factors | Understand the Factors of the Product | Concept of Factors

    Apr 13, 24 03:29 PM

    Factors of a number are discussed here so that students can understand the factors of the product. What are factors? (i) If a dividend, when divided by a divisor, is divided completely

    Read More

  3. Methods of Prime Factorization | Division Method | Factor Tree Method

    Apr 13, 24 01:27 PM

    Factor Tree Method
    In prime factorization, we factorise the numbers into prime numbers, called prime factors. There are two methods of prime factorization: 1. Division Method 2. Factor Tree Method

    Read More

  4. Divisibility Rules | Divisibility Test|Divisibility Rules From 2 to 18

    Apr 13, 24 12:41 PM

    Divisibility Rules
    To find out factors of larger numbers quickly, we perform divisibility test. There are certain rules to check divisibility of numbers. Divisibility tests of a given number by any of the number 2, 3, 4…

    Read More

  5. Even and Odd Numbers Between 1 and 100 | Even and Odd Numbers|Examples

    Apr 12, 24 04:22 PM

    even and odd numbers
    All the even and odd numbers between 1 and 100 are discussed here. What are the even numbers from 1 to 100? The even numbers from 1 to 100 are:

    Read More