Symmetric Relation on Set

Here we will discuss about the symmetric relation on set.

Let A be a set in which the relation R defined. Then R is said to be a symmetric relation, if (a, b) ∈ R ⇒ (b, a) ∈ R, that is, aRb ⇒ bRa for all (a, b) ∈ R.

Consider, for example, the set A of natural numbers. If a relation A be defined by “x + y = 5”, then this relation is symmetric in A, for

a + b = 5 ⇒ b + a = 5

But in the set A of natural numbers if the relation R be defined as ‘x is a divisor of y’, then the relation R is not symmetric as 3R9 does not imply 9R3; for, 3 divides 9 but 9 does not divide 3.

For a symmetric relation R, R1 = R.


Solved example on symmetric relation on set:

1. A relation R is defined on the set Z by “a R b if a – b is divisible by 5” for a, b ∈ Z. Examine if R is a symmetric relation on Z.

Solution:

Let a, b ∈ Z and aRb hold. Then a – b is divisible by 5 and therefore b – a is divisible by 5.

Thus, aRb ⇒ bRa and therefore R is symmetric.


2. A relation R is defined on the set Z (set of all integers) by “aRb if and only if 2a + 3b is divisible by 5”, for all a, b ∈ Z. Examine if R is a symmetric relation on Z.

Solution:

Let a, b ∈ Z and aRb holds i.e., 2a + 3a = 5a, which is divisible by 5. Now, 2a + 3a = 5a – 2a + 5b – 3b = 5(a + b) – (2a + 3b) is also divisible by 5.

Therefore aRa holds for all a in Z i.e. R is reflexive.


3. Let R be a relation on Q, defined by R = {(a, b) : a, b ∈ Q and a – b ∈ Z}. Show that R is Symmetric relation.

Solution:

Given R = {(a, b) : a, b ∈ Q, and a – b ∈ Z}.

Let ab ∈ R ⇒ (a – b) ∈ Z, i.e. (a – b) is an integer.

               ⇒ -(a – b) is an integer

               ⇒ (b – a) is an integer

               ⇒ (b, a) ∈ R

Thus, (a, b) ∈ R ⇒ (b, a) ∈ R

Therefore, R is symmetric.


4. Let m be given fixed positive integer.

Let R = {(a, a) : a, b  ∈ Z and (a – b) is divisible by m}.

Show that R is symmetric relation.

Solution:

Given R = {(a, b) : a, b ∈ Z, and (a – b) is divisible by m}.

Let ab ∈ R . Then,

     ab ∈ R ⇒ (a – b) is divisible by m

               ⇒ -(a – b) is divisible by m

               ⇒ (b – a) is divisible by m

               ⇒ (b, a) ∈ R

Thus, (a, b) ∈ R ⇒ (b, a) ∈ R

Therefore, R is symmetric relation on set Z.

Set Theory

Sets

Representation of a Set

Types of Sets

Pairs of Sets

Subset

Practice Test on Sets and Subsets

Complement of a Set

Problems on Operation on Sets

Operations on Sets

Practice Test on Operations on Sets

Word Problems on Sets

Venn Diagrams

Venn Diagrams in Different Situations

Relationship in Sets using Venn Diagram

Examples on Venn Diagram

Practice Test on Venn Diagrams

Cardinal Properties of Sets



7th Grade Math Problems

8th Grade Math Practice

From Symmetric Relation on Set to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Counting Numbers from 1 to 50 | Match the Number | Missing Numbers

    Apr 04, 25 03:46 PM

    Math Coloring Pages on Counting Number Oredr
    In counting numbers from 1 to 50, recognize the numbers, count and then join the numbers in the correct number order. Here we mainly need eye-hand coordination to draw the picture and maintain the num

    Read More

  2. Counting Eleven to Twenty with Numbers and Words |Numbers from 11 - 20

    Apr 04, 25 03:21 PM

    Counting eleven to twenty with numbers and words are explained below. One ten and one more is eleven. Eleven comes after ten. One ten and two more is twelve. Twelve comes after eleven.

    Read More

  3. 5th Grade BODMAS Rule Worksheet | PEMDAS | Order of operations|Answers

    Apr 03, 25 03:11 PM

    5th Grade BODMAS Rule Worksheet
    In 5th Grade BODMAS Rule Worksheet you will get different types of problems on mathematical expressions involving different operations, mathematical expression with 'brackets' and 'of' and simplifying…

    Read More

  4. Worksheet on Simplification | Simplify Expressions | BODMAS Questions

    Apr 03, 25 02:58 PM

    Worksheet on Simplification
    In worksheet on simplification, the questions are based in order to simplify expressions involving more than one bracket by using the steps of removal of brackets. This exercise sheet

    Read More

  5. Divisible by 2 Video |Test of Divisibility by 2 Trick| Rules| Examples

    Apr 03, 25 10:25 AM

    Divisible by 2
    A number is divisible by 2 if the digit at unit place is either 0 or multiple of 2. So a number is divisible by 2 if digit at its units place is 0, 2, 4, 6 or 8.

    Read More