Relation in Math

The concept of relation in math refers to an association of two objects or two variables based some property possessed by them.

For Example:

1. Rachel is the daughter of Noah. 

This statement shows the relation between two persons. 

The relation (R) being ‘is daughter of’. 


2. 5 is less than 9. 

This statement shows the relation between two numbers. 

The relation (R) being ‘is less than’. 

If A and B are two non-empty sets, then the relation R from A to B is a subset of A x B, i.e., R ⊆ A x B. 

If (a, b) ∈ R, then we write a R b and is read as 'a' related to 'b'. 



3. Let A and B denote the set animals and their young ones. 

Clearly, A = {cat, dog, cow, goat}

B = {kitten, puppy, calf, kid}

The relation (R) being ‘is young one of ‘.

Then the fact that,

Kitten is the young one of a cat.

Thus, kitten is related to cat.

Puppy is the young one of a dog.

Thus, puppy is related to dog.


Calf is the young one of a cow.

Thus, calf is related to cow.


Kid is the young one of a goat.

Thus, kid is related to goat.


This fact can also be written as set R or ordered pairs.

R = {(kitten, cat), (puppy, dog), (calf, cow), (kid, goat)}

Clearly, R ⊆ B × A

Thus, if A and B are two non-empty sets, then the relation R from A to B is a subset of A×B, i.e., R ⊆ A × B.

If (a, b) ∈ R, then we write a R b and is read as a is related to b.


Representation of Relation in Math:

The relation in math from set A to set B is expressed in different forms. 

      (i) Roster form 

      (ii) Set builder form 

      (iii) Arrow diagram 





i. Roster form: 

● In this, the relation (R) from set A to B is represented as a set of ordered pairs.

● In each ordered pair 1st component is from A; 2nd component is from B.

● Keep in mind the relation we are dealing with. (>, < etc.)

For Example:

1. If A = {p, q, r} B = {3, 4, 5}

then R = {(p, 3), (q, 4), (r, 5)}

Hence, R ⊆ A × B


2. Given A = {3, 4, 7, 10} B = {5, 2, 8, 1} then the relation R from A to B is defined as ‘is less than’ and can be represented in the roster form as R = {(3, 5) (3, 8) (4, 5), (4, 8), (7, 8)}

Here, 1ˢᵗ component < 2ⁿᵈ component.

In roster form, the relation is represented by the set of all ordered pairs belonging to R.

If A = {-1, 1, 2} and B = {1, 4, 9, 10}

if a R b means a² = b

then, R (in roster form) = {(-1, 1), (1, 1), (2, 4)



ii. Set builder form:

In this form, the relation R from set A to set B is represented as R = {(a, b): a ∈ A, b ∈ B, a...b}, the blank space is replaced by the rule which associates a and b.

For Example:

Let A = {2, 4, 5, 6, 8} and B = {4, 6, 8, 9}

Let R = {(2, 4), (4, 6), (6, 8), (8, 10) then R in the set builder form, it can be written as

R = {a, b} : a ∈ A, b ∈ B, a is 2 less than b}


iii. Arrow diagram:

● Draw two circles representing Set A and Set B.

● Write their elements in the corresponding sets, i.e., elements of Set A in circle A and elements of Set B in circle B.

● Draw arrows from A to B which satisfy the relation and indicate the ordered pairs.

Arrow diagram

For Example:



1. If A = {3, 4, 5} B = {2, 4, 6, 9, 15, 16, 25}, then relation R from A to B is defined as ‘is a positive square root of’ and can be represented by the arrow diagram as shown.
Here R = {(3, 9); (4, 16); (5, 25)}





In this form, the relation R from set A to set B is represented by drawing arrows from 1ˢᵗ component to 2ⁿᵈ components of all ordered pairs which belong to R.

Representation of Relation in Math






2. If A = {2, 3, 4, 5} and B = {1, 3, 5} and R be the relation 'is less than' from A to B,
then R = {(2, 3), (2, 5), (3, 5), (4, 5)}







 Relations and Mapping

Ordered Pair

Cartesian Product of Two Sets

Relation

Domain and Range of a Relation

Functions or Mapping

Domain Co-domain and Range of Function


 Relations and Mapping - Worksheets

Worksheet on Math Relation

Worksheet on Functions or Mapping









7th Grade Math Problems

8th Grade Math Practice

From Relation in Math to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Comparison of Three-digit Numbers | Arrange 3-digit Numbers |Questions

    Sep 13, 24 02:48 AM

    What are the rules for the comparison of three-digit numbers? (i) The numbers having less than three digits are always smaller than the numbers having three digits as:

    Read More

  2. Worksheet on Three-digit Numbers | Write the Missing Numbers | Pattern

    Sep 13, 24 02:23 AM

    3-Digit Numbers Crossword
    Practice the questions given in worksheet on three-digit numbers. The questions are based on writing the missing number in the correct order, patterns, 3-digit number in words, number names in figures…

    Read More

  3. 2nd Grade Place Value | Definition | Explanation | Examples |Worksheet

    Sep 13, 24 01:20 AM

    2nd Grade Place Value
    The value of a digit in a given number depends on its place or position in the number. This value is called its place value.

    Read More

  4. Comparison of Two-digit Numbers | Arrange 2-digit Numbers | Examples

    Sep 12, 24 03:07 PM

     Compare 39 and 36
    What are the rules for the comparison of two-digit numbers? We know that a two-digit number is always greater than a single digit number. But, when both the numbers are two-digit numbers

    Read More

  5. Worksheet on Two Digit Numbers | Numbers in Words | Two-Digit Numbers

    Sep 12, 24 02:09 AM

    Even and Odd Numbers Worksheet
    In worksheet on 2-digit numbers we will write the number which come before, after and in between, write the numerals, write the number names, place value and face value of 2-digit numbers, numbers in…

    Read More