Domain and Range of a Relation


In domain and range of a relation, if R be a relation from set A to set B, then

• The set of all first components of the ordered pairs belonging to R is called the domain of R.
Thus, Dom(R) = {a ∈ A: (a, b) ∈ R for some b ∈ B}.

• The set of all second components of the ordered pairs belonging to R is called the range of R.

Thus, range of R = {b ∈ B: (a, b) ∈R for some a ∈ A}.

Therefore, Domain (R) = {a : (a, b) ∈ R} and Range (R) = {b : (a, b) ∈ R}


Note:

The domain of a relation from A to B is a subset of A. 

The range of a relation from A to B is a subset of B.



For Example:

If A = {2, 4, 6, 8)   B = {5, 7, 1, 9}.

Let R be the relation ‘is less than’ from A to B. Find Domain (R) and Range (R).

Solution:

Under this relation (R), we have

R = {(4, 5); (4, 7); (4, 9); (6, 7); (6, 9), (8, 9) (2, 5) (2, 7) (2, 9)}

Therefore, Domain (R) = {2, 4, 6, 8} and Range (R) = {1, 5, 7, 9}


Solved examples on domain and range of a relation:

1. In the given ordered pair (4, 6); (8, 4); (4, 4); (9, 11); (6, 3); (3, 0); (2, 3) find the following relations. Also, find the domain and range.

(a) Is two less than

(b) Is less than

(c) Is greater than

(d) Is equal to

Solution:

(a) R₁ is the set of all ordered pairs whose 1ˢᵗ component is two less than the 2ⁿᵈ component.

Therefore, R₁ = {(4, 6); (9, 11)}

Also, Domain (R₁) = Set of all first components of R₁ = {4, 9} and Range (R₂) = Set of all second components of R₂ = {6, 11}


(b) R₂ is the set of all ordered pairs whose 1ˢᵗ component is less than the second component.

Therefore, R₂ = {(4, 6); (9, 11); (2, 3)}.

Also, Domain (R₂) = {4, 9, 2} and Range (R₂) = {6, 11, 3}


(c) R₃ is the set of all ordered pairs whose 1ˢᵗ component is greater than the second component.

Therefore, R₃ = {(8, 4); (6, 3); (3, 0)}

Also, Domain (R₃) = {8, 6, 3} and Range (R₃) = {4, 3, 0}


(d) R₄ is the set of all ordered pairs whose 1ˢᵗ component is equal to the second component.

Therefore, R₄ = {(3, 3)}

Also, Domain (R) = {3} and Range (R) = {3}



2. Let A = {2, 3, 4, 5} and B = {8, 9, 10, 11}.

Let R be the relation ‘is factor of’ from A to B.

(a) Write R in the roster form. Also, find Domain and Range of R.

(b) Draw an arrow diagram to represent the relation.

Solution:

(a) Clearly, R consists of elements (a, b) where a is a factor of b.

Therefore, Relation (R) in the roster form is R = {(2, 8); (2, 10); (3, 9); (4, 8), (5, 10)}

Therefore, Domain (R) = Set of all first components of R = {2, 3, 4, 5} and Range (R) = Set of all second components of R = {8, 10, 9}

(b) The arrow diagram representing R is as follows:

Domain and Range of R




3. The arrow diagram shows the relation (R) from set A to set B. Write this relation in the roster form.

Arrow Diagram

Solution:

Clearly, R consists of elements (a, b), such that ‘a’ is square of ‘b’
i.e., a = b².

So, in roster form R = {(9, 3); (9, -3); (4, 2); (4, -2); (16, 4); (16, -4)}


Worked-out problems on domain and range of a relation:

4. Let A = {1, 2, 3, 4, 5} and B = {p, q, r, s}. Let R be a relation from A in B defined by
R = {1, p}, (1, r), (3, p), (4, q), (5, s), (3, p)}

Find domain and range of R.

Solution:

Given R = {(1, p), (1, r), (4, q), (5, s)}

Domain of R = set of first components of all elements of R = {1, 3, 4, 5}

Range of R = set of second components of all elements of R = {p, r, q, s}



5. Determine the domain and range of the relation R defined by

R = {x + 2, x + 3} : x ∈ {0, 1, 2, 3, 4, 5}

Solution:

Since, x = {0, 1, 2, 3, 4, 5}

Therefore,

      x = 0 ⇒ x + 2 = 0 + 2 = 2 and x + 3 = 0 + 3 = 3

      x = 1 ⇒ x + 2 = 1 + 2 = 3 and x + 3 = 1 + 3 = 4

      x = 2 ⇒ x + 2 = 2 + 2 = 4 and x + 3 = 2 + 3 = 5

      x = 3 ⇒ x + 2 = 3 + 2 = 5 and x + 3 = 3 + 3 = 6

      x = 4 ⇒ x + 2 = 4 + 2 = 6 and x + 3 = 4 + 3 = 7

      x = 5 ⇒ x + 2 = 5 + 2 = 7 and x + 3 = 5 + 3 = 8

Hence, R = {(2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8)}

Therefore, Domain of R = {a : (a, b) ∈R} = Set of first components of all ordered pair belonging to R.

Therefore, Domain of R = {2, 3, 4, 5, 6, 7}

Range of R = {b : (a, b) ∈ R} = Set of second components of all ordered pairs belonging to R.

Therefore, Range of R = {3, 4, 5, 6, 7, 8}


6. Let A = {3, 4, 5, 6, 7, 8}. Define a relation R from A to A by

    R = {(x, y) : y = x - 1}.

• Depict this relation using an arrow diagram.

• Write down the domain and range of R.

roster form

Solution:

By definition of relation

R = {(4, 3) (5, 4) (6, 5)}

The corresponding arrow diagram is shown.

We can see that domain = {4, 5, 6} and Range = {3, 4, 5}




7. The adjoining figure shows a relation between the sets A and B.

Write this relation in

  • Set builder form

  • Roster form

  • Find the domain and range

Set Builder Form

Solution:

We observe that the relation R is 'a’ is the square of ‘b'.

In set builder form R = {(a, b) : a is the square of b, a ∈ A, b ∈ B}

In roster form R = {(4, 2) (4, -2)(9, 3) (9, -3)}

Therefore, Domain of R = {4, 9}

Range of R = {2, -2, 3, -3}

Note: The element 1 is not related to any element in set A.



 Relations and Mapping

Ordered Pair

Cartesian Product of Two Sets

Relation

Domain and Range of a Relation

Functions or Mapping

Domain Co-domain and Range of Function


 Relations and Mapping - Worksheets

Worksheet on Math Relation

Worksheet on Functions or Mapping









7th Grade Math Problems 

8th Grade Math Practice 

From Domain and Range of a Relation to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Converting Fractions to Decimals | Solved Examples | Free Worksheet

    Apr 28, 25 01:43 AM

    Converting Fractions to Decimals
    In converting fractions to decimals, we know that decimals are fractions with denominators 10, 100, 1000 etc. In order to convert other fractions into decimals, we follow the following steps:

    Read More

  2. Expanded Form of a Number | Writing Numbers in Expanded Form | Values

    Apr 27, 25 10:13 AM

    Expanded Form of a Number
    We know that the number written as sum of the place-values of its digits is called the expanded form of a number. In expanded form of a number, the number is shown according to the place values of its…

    Read More

  3. Converting Decimals to Fractions | Solved Examples | Free Worksheet

    Apr 26, 25 04:56 PM

    Converting Decimals to Fractions
    In converting decimals to fractions, we know that a decimal can always be converted into a fraction by using the following steps: Step I: Obtain the decimal. Step II: Remove the decimal points from th…

    Read More

  4. Worksheet on Decimal Numbers | Decimals Number Concepts | Answers

    Apr 26, 25 03:48 PM

    Worksheet on Decimal Numbers
    Practice different types of math questions given in the worksheet on decimal numbers, these math problems will help the students to review decimals number concepts.

    Read More

  5. Multiplication Table of 4 |Read and Write the Table of 4|4 Times Table

    Apr 26, 25 01:00 PM

    Multiplication Table of Four
    Repeated addition by 4’s means the multiplication table of 4. (i) When 5 candle-stands having four candles each. By repeated addition we can show 4 + 4 + 4 + 4 + 4 = 20 Then, four 5 times

    Read More