Domain and Range of a Relation


In domain and range of a relation, if R be a relation from set A to set B, then

• The set of all first components of the ordered pairs belonging to R is called the domain of R.
Thus, Dom(R) = {a ∈ A: (a, b) ∈ R for some b ∈ B}.

• The set of all second components of the ordered pairs belonging to R is called the range of R.

Thus, range of R = {b ∈ B: (a, b) ∈R for some a ∈ A}.

Therefore, Domain (R) = {a : (a, b) ∈ R} and Range (R) = {b : (a, b) ∈ R}


Note:

The domain of a relation from A to B is a subset of A. 

The range of a relation from A to B is a subset of B.



For Example:

If A = {2, 4, 6, 8)   B = {5, 7, 1, 9}.

Let R be the relation ‘is less than’ from A to B. Find Domain (R) and Range (R).

Solution:

Under this relation (R), we have

R = {(4, 5); (4, 7); (4, 9); (6, 7); (6, 9), (8, 9) (2, 5) (2, 7) (2, 9)}

Therefore, Domain (R) = {2, 4, 6, 8} and Range (R) = {1, 5, 7, 9}


Solved examples on domain and range of a relation:

1. In the given ordered pair (4, 6); (8, 4); (4, 4); (9, 11); (6, 3); (3, 0); (2, 3) find the following relations. Also, find the domain and range.

(a) Is two less than

(b) Is less than

(c) Is greater than

(d) Is equal to

Solution:

(a) R₁ is the set of all ordered pairs whose 1ˢᵗ component is two less than the 2ⁿᵈ component.

Therefore, R₁ = {(4, 6); (9, 11)}

Also, Domain (R₁) = Set of all first components of R₁ = {4, 9} and Range (R₂) = Set of all second components of R₂ = {6, 11}


(b) R₂ is the set of all ordered pairs whose 1ˢᵗ component is less than the second component.

Therefore, R₂ = {(4, 6); (9, 11); (2, 3)}.

Also, Domain (R₂) = {4, 9, 2} and Range (R₂) = {6, 11, 3}


(c) R₃ is the set of all ordered pairs whose 1ˢᵗ component is greater than the second component.

Therefore, R₃ = {(8, 4); (6, 3); (3, 0)}

Also, Domain (R₃) = {8, 6, 3} and Range (R₃) = {4, 3, 0}


(d) R₄ is the set of all ordered pairs whose 1ˢᵗ component is equal to the second component.

Therefore, R₄ = {(3, 3)}

Also, Domain (R) = {3} and Range (R) = {3}



2. Let A = {2, 3, 4, 5} and B = {8, 9, 10, 11}.

Let R be the relation ‘is factor of’ from A to B.

(a) Write R in the roster form. Also, find Domain and Range of R.

(b) Draw an arrow diagram to represent the relation.

Solution:

(a) Clearly, R consists of elements (a, b) where a is a factor of b.

Therefore, Relation (R) in the roster form is R = {(2, 8); (2, 10); (3, 9); (4, 8), (5, 10)}

Therefore, Domain (R) = Set of all first components of R = {2, 3, 4, 5} and Range (R) = Set of all second components of R = {8, 10, 9}

(b) The arrow diagram representing R is as follows:

Domain and Range of R




3. The arrow diagram shows the relation (R) from set A to set B. Write this relation in the roster form.

Arrow Diagram

Solution:

Clearly, R consists of elements (a, b), such that ‘a’ is square of ‘b’
i.e., a = b².

So, in roster form R = {(9, 3); (9, -3); (4, 2); (4, -2); (16, 4); (16, -4)}


Worked-out problems on domain and range of a relation:

4. Let A = {1, 2, 3, 4, 5} and B = {p, q, r, s}. Let R be a relation from A in B defined by
R = {1, p}, (1, r), (3, p), (4, q), (5, s), (3, p)}

Find domain and range of R.

Solution:

Given R = {(1, p), (1, r), (4, q), (5, s)}

Domain of R = set of first components of all elements of R = {1, 3, 4, 5}

Range of R = set of second components of all elements of R = {p, r, q, s}



5. Determine the domain and range of the relation R defined by

R = {x + 2, x + 3} : x ∈ {0, 1, 2, 3, 4, 5}

Solution:

Since, x = {0, 1, 2, 3, 4, 5}

Therefore,

      x = 0 ⇒ x + 2 = 0 + 2 = 2 and x + 3 = 0 + 3 = 3

      x = 1 ⇒ x + 2 = 1 + 2 = 3 and x + 3 = 1 + 3 = 4

      x = 2 ⇒ x + 2 = 2 + 2 = 4 and x + 3 = 2 + 3 = 5

      x = 3 ⇒ x + 2 = 3 + 2 = 5 and x + 3 = 3 + 3 = 6

      x = 4 ⇒ x + 2 = 4 + 2 = 6 and x + 3 = 4 + 3 = 7

      x = 5 ⇒ x + 2 = 5 + 2 = 7 and x + 3 = 5 + 3 = 8

Hence, R = {(2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8)}

Therefore, Domain of R = {a : (a, b) ∈R} = Set of first components of all ordered pair belonging to R.

Therefore, Domain of R = {2, 3, 4, 5, 6, 7}

Range of R = {b : (a, b) ∈ R} = Set of second components of all ordered pairs belonging to R.

Therefore, Range of R = {3, 4, 5, 6, 7, 8}


6. Let A = {3, 4, 5, 6, 7, 8}. Define a relation R from A to A by

    R = {(x, y) : y = x - 1}.

• Depict this relation using an arrow diagram.

• Write down the domain and range of R.

roster form

Solution:

By definition of relation

R = {(4, 3) (5, 4) (6, 5)}

The corresponding arrow diagram is shown.

We can see that domain = {4, 5, 6} and Range = {3, 4, 5}




7. The adjoining figure shows a relation between the sets A and B.

Write this relation in

  • Set builder form

  • Roster form

  • Find the domain and range

Set Builder Form

Solution:

We observe that the relation R is 'a’ is the square of ‘b'.

In set builder form R = {(a, b) : a is the square of b, a ∈ A, b ∈ B}

In roster form R = {(4, 2) (4, -2)(9, 3) (9, -3)}

Therefore, Domain of R = {4, 9}

Range of R = {2, -2, 3, -3}

Note: The element 1 is not related to any element in set A.



 Relations and Mapping

Ordered Pair

Cartesian Product of Two Sets

Relation

Domain and Range of a Relation

Functions or Mapping

Domain Co-domain and Range of Function


 Relations and Mapping - Worksheets

Worksheet on Math Relation

Worksheet on Functions or Mapping









7th Grade Math Problems 

8th Grade Math Practice 

From Domain and Range of a Relation to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Place Value | Place, Place Value and Face Value | Grouping the Digits

    Oct 04, 24 09:47 AM

    Place Value of 3-Digit Numbers
    The place value of a digit in a number is the value it holds to be at the place in the number. We know about the place value and face value of a digit and we will learn about it in details. We know th…

    Read More

  2. Worksheet on Subtraction | Practice the Questions | Free Answers

    Oct 04, 24 01:28 AM

    In worksheet on subtraction, all grade students can practice the questions on subtracting numbers with more than two digits. This exercise sheet on subtraction can be practiced by the students

    Read More

  3. Subtraction Word Problems - 2-Digit Numbers | Subtraction Problems

    Oct 03, 24 03:22 PM

    Understand the concept on subtraction word problems - 2-digit numbers for the second grade. Read the question carefully to subtract the two-digit numbers to find the differences and follow the

    Read More

  4. Worksheet on Checking Subtraction Using Addition | Free Answers | Math

    Oct 03, 24 02:22 PM

    Checking Subtraction using Addition
    Here we can use addition to check the answer for the subtraction. Subtract ans check your answer. Find the difference and check your answer using addition.

    Read More

  5. Check for Subtraction and Addition | Checking Subtraction | Problems

    Oct 03, 24 01:13 PM

    Checking Subtraction with Addition
    We will learn to check for subtraction and addition answers after solving. Difference of two numbers is correct when the sum of the subtrahend number and the difference is equal to the minuend.

    Read More