Radian is a Constant Angle

Here we will discuss about radian is a constant angle. Let O be the centre of a circle and radius OR = r. If we take an arc AB = OA = r, then by definition, ∠AOB =1 radian.

Let AO be produced to meet the circle at the point C. Then the length of the arc ABC half the circumference and ∠AOC, the angle at the centre subtended by this arc = a straight angle = two right angles.

Now if we take the ratio of the two arcs and that of the two angles, we have

arc AB/arc ABC = r/(1/2 × 2∙π∙r) = 1/ π

AOB/∠AOC = 1 radian/2 right angles

Radian is a Constant Angle

But in geometry, we can show that an arc of a circle is proportional to the angle it subtends at the centre of the circle.


Therefore, ∠AOB/∠AOC = arc AB/arc ABC

or, 1 radian/2 right angles = 1/π

Therefore, 1 radian = 2/π right angles

This is constant as both 2 right angles and π are constants.

The approximate value of π is taken as 22/7 for calculation



Corollary:

π radian =

=

2 right angles

180°

If we express one radian in the units of sexagesimal system, we will get

1 radian =

=

=

180°/(22/7)

(180 × 7°)/22

57° 16’ 22” (approx.)

Basic Trigonometry 

Trigonometry

Measurement of Trigonometric Angles

Circular System

Radian is a Constant Angle

Relation between Sexagesimal and Circular

Conversion from Sexagesimal to Circular System

Conversion from Circular to Sexagesimal System





9th Grade Math

From Radian is a Constant Angle to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Shifting of Digits in a Number |Exchanging the Digits to Another Place

    May 19, 24 06:35 PM

    Shifting of Digits in a Number
    What is the Effect of shifting of digits in a number? Let us observe two numbers 1528 and 5182. We see that the digits are the same, but places are different in these two numbers. Thus, if the digits…

    Read More

  2. Formation of Greatest and Smallest Numbers | Arranging the Numbers

    May 19, 24 03:36 PM

    Formation of Greatest and Smallest Numbers
    the greatest number is formed by arranging the given digits in descending order and the smallest number by arranging them in ascending order. The position of the digit at the extreme left of a number…

    Read More

  3. Formation of Numbers with the Given Digits |Making Numbers with Digits

    May 19, 24 03:19 PM

    In formation of numbers with the given digits we may say that a number is an arranged group of digits. Numbers may be formed with or without the repetition of digits.

    Read More

  4. Arranging Numbers | Ascending Order | Descending Order |Compare Digits

    May 19, 24 02:23 PM

    Arranging Numbers
    We know, while arranging numbers from the smallest number to the largest number, then the numbers are arranged in ascending order. Vice-versa while arranging numbers from the largest number to the sma…

    Read More

  5. Comparison of Numbers | Compare Numbers Rules | Examples of Comparison

    May 19, 24 01:26 PM

    Rules for Comparison of Numbers
    Rule I: We know that a number with more digits is always greater than the number with less number of digits. Rule II: When the two numbers have the same number of digits, we start comparing the digits…

    Read More