Conversion from
Circular to Sexagesimal System

Worked-out problems on the conversion from circular to sexagesimal system:

1. In a right-angled triangle the difference between two acute angles is 2π/5. Express these two angles in terms of radian and degree.

Solution:

Let the acute angles be xc and yc. (According to the condition of the problem:

x + y = π/2 and x - y = 2π/5

Solving these two equations we get;

x = 1/2 (π/2 + 2π/5)

x = 1/2 (5π + 4π/10)

x = 1/2 (9π/10)

x = 9π/20

and y = 1/2 (π/2 - 2π/5)

y = 1/2 (5π - 4π/10)

y = 1/2 (π/10)

y = π/20

Again, x = (9 × 180°)/20 = 81°

y = 180°/20 = 9°


2. The circular measure of an angle is π/8; find its value in sexagesimal systems.

Solution:

πc/8

We know, πc = 180°

πc/8 = 180°/8

πc/8 = 22.5° = 22° + 0.5°

[Now we will convert 0.5° to minute.

0.5° = (0.5 × 60)’ ; since 1° = 60’

       = 30’]

πc/8 = 22° 30’

Therefore, the sexagesimal measures of the angle π/8 is 22° 30’


The above solved problems help us to learn in trigonometry, about the conversion from circular to sexagesimal system.

Basic Trigonometry 

Trigonometry

Measurement of Trigonometric Angles

Circular System

Radian is a Constant Angle

Relation between Sexagesimal and Circular

Conversion from Sexagesimal to Circular System

Conversion from Circular to Sexagesimal System




9th Grade Math

From Conversion from Circular to Sexagesimal System to Home Page




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Circle Worksheet | Free Worksheet with Answer |Practice Math

    Jul 11, 25 02:14 PM

    Radii of the circRadii, Chords, Diameters, Semi-circles
    In 5th Grade Circle Worksheet you will get different types of questions on parts of a circle, relation between radius and diameter, interior of a circle, exterior of a circle and construction of circl…

    Read More

  2. Construction of a Circle | Working Rules | Step-by-step Explanation |

    Jul 09, 25 01:29 AM

    Parts of a Circle
    Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jul 08, 25 02:32 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Addition & Subtraction Together |Combination of addition & subtraction

    Jul 08, 25 02:23 PM

    Addition and Subtraction Together Problem
    We will solve the different types of problems involving addition and subtraction together. To show the problem involving both addition and subtraction, we first group all the numbers with ‘+’ and…

    Read More

  5. 5th Grade Circle | Radius, Interior and Exterior of a Circle|Worksheet

    Jul 08, 25 09:55 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More