Conversion from
Sexagesimal to Circular System

Worked-out problems on the conversion from sexagesimal to circular system:

1. Express 40° 16’ 24” is radian.

Solution:

40° 16’ 24”

= 40° + 16’ + 24”

We know 1° = 60”

= 40° + 16’ + (24/60)’

= 40° + (16 + 2/5)’

= 40° + (82/5)’

We know 1° = 60’

= 40° + (82/5 × 60)°

= (40 + 41/150)°

= (6041/150)°

We know 180° = πc

Therefore, 6041°/150 = (πc/180) × (6041/150) = 6041/27000 πc

Therefore, 40° 16’ 24” = 6041/27000 πc


2. Show that 1° < 1c

Solution:

We know 180° = πc

or, 1° = (π/180)c

or, 1° = (22/7 × 180) c < 1c

Therefore, 1° < 1c

3. Two angles of a triangle are 75° and 45°. Find the value of the third angle in circular measure.

In ∆ABC, ∠ABC = 75° and ∠ACB = 45°; ∠BAC = ?

You know that the sum of the three angles of a triangle is 180°

Therefore, ∠BAC = 180° - (75° + 45°)

= 180° - 120°

= 60°

Again, we know: 180° = π

Therefore, 60° = 60 π/180 = π/3

In ΔABC, ∠BAC = π/3


4. A rotating ray revolves in the anticlockwise direction and makes two complete revolutions from its initial position and moves further to trace an angle of 30°. What are the sexagesimal and circular measures of the angle with reference to trigonometrical measure?

As the rotating ray does in the anti-clockwise direction, the angle formed is positive. We know, in one complete revolution the rotating ray traces an angle of 360°. So in two complete revolutions it makes an angle of 360° × 2 i.e. 720°. It has moved further to trace an angle of 30°. So the magnitude of the angle formed is (720° + 30°) i.e. 750°

Now, 180° = π

Therefore, 750° = 750 π/180 = 25 π/6


5. The ratio of the angles subtended at the centre by two unequal arcs of a circle is 5 : 3. If the magnitude of the second angle is 45°, find the sexagesimal and circular measures of the first angle.

Let the measure of the first angle be θ°

Then, according to the given condition, θ°/45° = 5/3

Therefore, θ° = 5/3 × 45° = 75°

Again we know, 180° = π

Therefore, 75° = 75 π/180 = 5 π/12

Therefore, the sexagesimal measure of the first angle is 75° and circular measure is 5 π/12.


6. ABC is an equilateral triangle in which AD is the line segment that joins the vertex A to the mid point of the side BC. What is the circular measure of ∠BAD?

Solution:

As ∆ABC is equilateral

Therefore, ∠BAC = 60°

We also know that the median of an equilateral triangle bisects the corresponding vertiealange. Therefore, ∠BAD = 30°

Therefore, the circular measure of ∠BAD = 30 π/180 = π/6

The above solved problems help us to learn in trigonometry, about the conversion from sexagesimal to circular system.

Basic Trigonometry 

Trigonometry

Measurement of Trigonometric Angles

Circular System

Radian is a Constant Angle

Relation between Sexagesimal and Circular

Conversion from Sexagesimal to Circular System

Conversion from Circular to Sexagesimal System





9th Grade Math

From Conversion from Sexagesimal to Circular System to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 04, 24 01:30 AM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More

  2. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Dec 04, 24 01:07 AM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More

  3. Worksheet on Subtraction of Money | Real-life Word Problems | Answers

    Dec 04, 24 12:45 AM

    Worksheet on Subtraction of Money
    Practice the questions given in the worksheet on subtraction of money by using without conversion and by conversion method (without regrouping and with regrouping). Note: Arrange the amount of rupees…

    Read More

  4. Worksheet on Addition of Money | Questions on Adding Amount of Money

    Dec 04, 24 12:06 AM

    Worksheet on Addition of Money
    Practice the questions given in the worksheet on addition of money by using without conversion and by conversion method (without regrouping and with regrouping). Note: Arrange the amount of money in t…

    Read More

  5. Worksheet on Money | Conversion of Money from Rupees to Paisa

    Dec 03, 24 11:37 PM

    Worksheet on Money
    Practice the questions given in the worksheet on money. This sheet provides different types of questions where students need to express the amount of money in short form and long form

    Read More