Problems on Parabola

We will learn how to solve different types of problems on parabola.

1. Find the vertex, focus, directrix, axis and latusrectum of the parabola y\(^{2}\) - 4x - 4y = 0

Solution:

The given equation of the parabola is y\(^{2}\) - 4x - 4y = 0

⇒ y\(^{2}\) - 4y = 4x

⇒ y\(^{2}\) - 4y + 4 = 4x + 4, (Adding 4 on both sides)

⇒ (y - 2)\(^{2}\) = 4(x  + 1) ……………………………….. (i)

Shifting the origin to the point (-1, 2) without rotating the axes and denoting the new coordinates with respect to these axes by X and Y, we have

x = X + (-1), y = Y + 2 ……………………………….. (ii)

Using these relations equation (i), reduces to

Y\(^{2}\) = 4X……………………………….. (iii)

This is of the form Y\(^{2}\) = 4aX. On comparing, we get 4a = 4 ⇒ a = 1.

The coordinates of the vertex with respect to new axes are (X = 0, Y = 0)

So, coordinates of the vertex with respect to old axes are (-1, 2), [Putting X= 0, Y = 0 in (ii)].

The coordinates of the focus with respect to new axes are (X = 1, Y = 0)

So, coordinates of the focus with respect to old axes are (0, 2), [Putting X= 1, Y = 0 in (ii)].

Equation of the directrix of the parabola with respect to new axes in X = -1

So, equation of the directrix of the parabola with respect to old asex is x = -2, [Putting X = -1, in (ii)].

Equation of the axis of the parabola with respect to new axes is Y = 0.

So, equation of axis with respect to old axes is y = 2, [Putting Y = 0, in (ii)].

The length of the latusrectum is 4 units.

 

2. Find the point on the parabola y\(^{2}\) = 12x at which the ordinate is double the abscissa. 

Solution: 

The given parabola is y\(^{2}\) = 12x.

Now, let (k, 2k) be the co-ordinates of the required point (k ≠ 0).

Since the point lies (k, 2k) on the parabola y\(^{2}\) = 12x,

Therefore, we get,

 (2k)\(^{2}\) = 12k

⇒ 4k\(^{2}\) = 12k     

⇒ k = 3 (Since, k ≠ 0, ).

Therefore, the co-ordinates of the required point are (3, 6).

 

3. Write the parametric equation of the parabola (x + 2)\(^{2}\) = - 4(y + 1).

Solution:

The given equation of the parabola is (x + 2)\(^{2}\) = - 4(y + 1).

Then parametric equation of the parabola (x + 2)\(^{2}\) = - 4(y + 1) are

x + 2 = 2t and y + 1 = -t\(^{2}\)

⇒ x = 2t – 2 and y = -t\(^{2}\) – 1.

 

4. Find the equation of the parabola whose co-ordinates of vertex and focus are (-2, 3) and (1, 3) respectively.

Solution:           

According to the problem, the ordinates of vertex and focus are equal hence, the axis of the required parabola is parallel to x-axis. Again,

a = abscissa of focus - abscissa of vertex

⇒ a = 1 - (- 2) = 1 + 2 = 3.

Therefore, the equation of the required parabola is

 (y - β)\(^{2}\) = 4a (x - α)                 

⇒ (y - 3)\(^{2}\) = 4 . 3(x + 2)

⇒ y\(^{2}\) - 6y + 9 = 12x + 24            

⇒ y\(^{2}\) - 6y - 12x = 15.

● The Parabola




11 and 12 Grade Math 

From Problems on Straight Lines to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Fraction in Lowest Terms |Reducing Fractions|Fraction in Simplest Form

    Feb 28, 24 04:07 PM

    Fraction 8/16
    There are two methods to reduce a given fraction to its simplest form, viz., H.C.F. Method and Prime Factorization Method. If numerator and denominator of a fraction have no common factor other than 1…

    Read More

  2. Equivalent Fractions | Fractions |Reduced to the Lowest Term |Examples

    Feb 28, 24 01:43 PM

    Equivalent Fractions
    The fractions having the same value are called equivalent fractions. Their numerator and denominator can be different but, they represent the same part of a whole. We can see the shade portion with re…

    Read More

  3. Fraction as a Part of Collection | Pictures of Fraction | Fractional

    Feb 27, 24 02:43 PM

    Pictures of Fraction
    How to find fraction as a part of collection? Let there be 14 rectangles forming a box or rectangle. Thus, it can be said that there is a collection of 14 rectangles, 2 rectangles in each row. If it i…

    Read More

  4. Fraction of a Whole Numbers | Fractional Number |Examples with Picture

    Feb 24, 24 04:11 PM

    A Collection of Apples
    Fraction of a whole numbers are explained here with 4 following examples. There are three shapes: (a) circle-shape (b) rectangle-shape and (c) square-shape. Each one is divided into 4 equal parts. One…

    Read More

  5. Identification of the Parts of a Fraction | Fractional Numbers | Parts

    Feb 24, 24 04:10 PM

    Fractional Parts
    We will discuss here about the identification of the parts of a fraction. We know fraction means part of something. Fraction tells us, into how many parts a whole has been

    Read More