Problems on Parabola

We will learn how to solve different types of problems on parabola.

1. Find the vertex, focus, directrix, axis and latusrectum of the parabola y2 - 4x - 4y = 0

Solution:

The given equation of the parabola is y2 - 4x - 4y = 0

⇒ y2 - 4y = 4x

⇒ y2 - 4y + 4 = 4x + 4, (Adding 4 on both sides)

⇒ (y - 2)2 = 4(x  + 1) ……………………………….. (i)

Shifting the origin to the point (-1, 2) without rotating the axes and denoting the new coordinates with respect to these axes by X and Y, we have

x = X + (-1), y = Y + 2 ……………………………….. (ii)

Using these relations equation (i), reduces to

Y2 = 4X……………………………….. (iii)

This is of the form Y2 = 4aX. On comparing, we get 4a = 4 ⇒ a = 1.

The coordinates of the vertex with respect to new axes are (X = 0, Y = 0)

So, coordinates of the vertex with respect to old axes are (-1, 2), [Putting X= 0, Y = 0 in (ii)].

The coordinates of the focus with respect to new axes are (X = 1, Y = 0)

So, coordinates of the focus with respect to old axes are (0, 2), [Putting X= 1, Y = 0 in (ii)].

Equation of the directrix of the parabola with respect to new axes in X = -1

So, equation of the directrix of the parabola with respect to old asex is x = -2, [Putting X = -1, in (ii)].

Equation of the axis of the parabola with respect to new axes is Y = 0.

So, equation of axis with respect to old axes is y = 2, [Putting Y = 0, in (ii)].

The length of the latusrectum is 4 units.

 

2. Find the point on the parabola y2 = 12x at which the ordinate is double the abscissa. 

Solution: 

The given parabola is y2 = 12x.

Now, let (k, 2k) be the co-ordinates of the required point (k ≠ 0).

Since the point lies (k, 2k) on the parabola y2 = 12x,

Therefore, we get,

 (2k)2 = 12k

⇒ 4k2 = 12k     

⇒ k = 3 (Since, k ≠ 0, ).

Therefore, the co-ordinates of the required point are (3, 6).

 

3. Write the parametric equation of the parabola (x + 2)2 = - 4(y + 1).

Solution:

The given equation of the parabola is (x + 2)2 = - 4(y + 1).

Then parametric equation of the parabola (x + 2)2 = - 4(y + 1) are

x + 2 = 2t and y + 1 = -t2

⇒ x = 2t – 2 and y = -t2 – 1.

 

4. Find the equation of the parabola whose co-ordinates of vertex and focus are (-2, 3) and (1, 3) respectively.

Solution:           

According to the problem, the ordinates of vertex and focus are equal hence, the axis of the required parabola is parallel to x-axis. Again,

a = abscissa of focus - abscissa of vertex

⇒ a = 1 - (- 2) = 1 + 2 = 3.

Therefore, the equation of the required parabola is

 (y - β)2 = 4a (x - α)                 

⇒ (y - 3)2 = 4 . 3(x + 2)

⇒ y2 - 6y + 9 = 12x + 24            

⇒ y2 - 6y - 12x = 15.

● The Parabola




11 and 12 Grade Math 

From Problems on Straight Lines to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Successor and Predecessor | Successor of a Whole Number | Predecessor

    Jul 29, 25 12:59 AM

    Successor and Predecessor
    The number that comes just before a number is called the predecessor. So, the predecessor of a given number is 1 less than the given number. Successor of a given number is 1 more than the given number…

    Read More

  2. Worksheet on Area, Perimeter and Volume | Square, Rectangle, Cube,Cubo

    Jul 28, 25 01:52 PM

    Volume of a Cuboids
    In this worksheet on area perimeter and volume you will get different types of questions on find the perimeter of a rectangle, find the perimeter of a square, find the area of a rectangle, find the ar…

    Read More

  3. Worksheet on Volume of a Cube and Cuboid |The Volume of a RectangleBox

    Jul 25, 25 03:15 AM

    Volume of a Cube and Cuboid
    We will practice the questions given in the worksheet on volume of a cube and cuboid. We know the volume of an object is the amount of space occupied by the object.1. Fill in the blanks:

    Read More

  4. Volume of a Cuboid | Volume of Cuboid Formula | How to Find the Volume

    Jul 24, 25 03:46 PM

    Volume of Cuboid
    Cuboid is a solid box whose every surface is a rectangle of same area or different areas. A cuboid will have a length, breadth and height. Hence we can conclude that volume is 3 dimensional. To measur…

    Read More

  5. Volume of a Cube | How to Calculate the Volume of a Cube? | Examples

    Jul 23, 25 11:37 AM

    Volume of a Cube
    A cube is a solid box whose every surface is a square of same area. Take an empty box with open top in the shape of a cube whose each edge is 2 cm. Now fit cubes of edges 1 cm in it. From the figure i…

    Read More