Problems on Parabola

We will learn how to solve different types of problems on parabola.

1. Find the vertex, focus, directrix, axis and latusrectum of the parabola y\(^{2}\) - 4x - 4y = 0

Solution:

The given equation of the parabola is y\(^{2}\) - 4x - 4y = 0

⇒ y\(^{2}\) - 4y = 4x

⇒ y\(^{2}\) - 4y + 4 = 4x + 4, (Adding 4 on both sides)

⇒ (y - 2)\(^{2}\) = 4(x  + 1) ……………………………….. (i)

Shifting the origin to the point (-1, 2) without rotating the axes and denoting the new coordinates with respect to these axes by X and Y, we have

x = X + (-1), y = Y + 2 ……………………………….. (ii)

Using these relations equation (i), reduces to

Y\(^{2}\) = 4X……………………………….. (iii)

This is of the form Y\(^{2}\) = 4aX. On comparing, we get 4a = 4 ⇒ a = 1.

The coordinates of the vertex with respect to new axes are (X = 0, Y = 0)

So, coordinates of the vertex with respect to old axes are (-1, 2), [Putting X= 0, Y = 0 in (ii)].

The coordinates of the focus with respect to new axes are (X = 1, Y = 0)

So, coordinates of the focus with respect to old axes are (0, 2), [Putting X= 1, Y = 0 in (ii)].

Equation of the directrix of the parabola with respect to new axes in X = -1

So, equation of the directrix of the parabola with respect to old asex is x = -2, [Putting X = -1, in (ii)].

Equation of the axis of the parabola with respect to new axes is Y = 0.

So, equation of axis with respect to old axes is y = 2, [Putting Y = 0, in (ii)].

The length of the latusrectum is 4 units.

 

2. Find the point on the parabola y\(^{2}\) = 12x at which the ordinate is double the abscissa. 

Solution: 

The given parabola is y\(^{2}\) = 12x.

Now, let (k, 2k) be the co-ordinates of the required point (k ≠ 0).

Since the point lies (k, 2k) on the parabola y\(^{2}\) = 12x,

Therefore, we get,

 (2k)\(^{2}\) = 12k

⇒ 4k\(^{2}\) = 12k     

⇒ k = 3 (Since, k ≠ 0, ).

Therefore, the co-ordinates of the required point are (3, 6).

 

3. Write the parametric equation of the parabola (x + 2)\(^{2}\) = - 4(y + 1).

Solution:

The given equation of the parabola is (x + 2)\(^{2}\) = - 4(y + 1).

Then parametric equation of the parabola (x + 2)\(^{2}\) = - 4(y + 1) are

x + 2 = 2t and y + 1 = -t\(^{2}\)

⇒ x = 2t – 2 and y = -t\(^{2}\) – 1.

 

4. Find the equation of the parabola whose co-ordinates of vertex and focus are (-2, 3) and (1, 3) respectively.

Solution:           

According to the problem, the ordinates of vertex and focus are equal hence, the axis of the required parabola is parallel to x-axis. Again,

a = abscissa of focus - abscissa of vertex

⇒ a = 1 - (- 2) = 1 + 2 = 3.

Therefore, the equation of the required parabola is

 (y - β)\(^{2}\) = 4a (x - α)                 

⇒ (y - 3)\(^{2}\) = 4 . 3(x + 2)

⇒ y\(^{2}\) - 6y + 9 = 12x + 24            

⇒ y\(^{2}\) - 6y - 12x = 15.

● The Parabola




11 and 12 Grade Math 

From Problems on Straight Lines to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 11, 24 09:08 AM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  2. Types of Lines |Straight Lines|Curved Lines|Horizontal Lines| Vertical

    Dec 09, 24 10:39 PM

    Types of Lines
    What are the different types of lines? There are two different kinds of lines. (i) Straight line and (ii) Curved line. There are three different types of straight lines. (i) Horizontal lines, (ii) Ver…

    Read More

  3. Points and Line Segment | Two Points in a Curved Surface | Curve Line

    Dec 09, 24 01:08 AM

    Curved Lines and Straight Line
    We will discuss here about points and line segment. We know when two lines meet we get a point. When two points on a plane surface are joined, a straight line segment is obtained.

    Read More

  4. Solid Shapes | Basic Geometric Shapes | Common Solid Figures | Plane

    Dec 08, 24 11:19 PM

    Solid Shapes
    We will discuss about basic solid shapes. We see a variety of solid objects in our surroundings. Solid objects have one or more shapes like the following. Match the objects with similar shape.

    Read More

  5. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 07, 24 03:38 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More