Parametric Equations of a Parabola

We will learn in the simplest way how to find the parametric equations of a parabola.

The best and easiest form to represent the co-ordinates of any point on the parabola y\(^{2}\) = 4ax is (at\(^{2}\), 2at). Since, for all the values of ‘t’ the coordinates (at\(^{2}\), 2at) satisfy the equation of the parabola y\(^{2}\) =  4ax.

Together the equations x = at\(^{2}\) and y = 2at (where t is the parameter) are called the parametric equations of the parabola y\(^{2}\) = 4ax.

Let us discuss the parametric coordinates of a point and their parametric equations on the other standard forms of the parabola.


The following gives the parametric coordinates of a point on four standard forms of the parabola and their parametric equations.

Standard equation of the parabola y\(^{2}\) = -4ax:

Parametric coordinates of the parabola y\(^{2}\) = -4ax are (-at\(^{2}\), 2at).

Parametric equations of the parabola y\(^{2}\) = -4ax are x = -at\(^{2}\), y = 2at.

 

Standard equation of the parabola x\(^{2}\) = 4ay:

Parametric coordinates of the parabola x\(^{2}\) = 4ay are (2at, at\(^{2}\)).

Parametric equations of the parabola x\(^{2}\) = 4ay are x = 2at, y = at\(^{2}\).


Standard equation of the parabola x\(^{2}\) = -4ay:

Parametric coordinates of the parabola x\(^{2}\) = -4ay are (2at, -at\(^{2}\)).

Parametric equations of the parabola x\(^{2}\) = -4ay are x = 2at, y = -at\(^{2}\).


Standard equation of the parabola (y - k)\(^{2}\) = 4a(x - h):

The parametric equations of the parabola (y - k)\(^{2}\) = 4a(x - h) are x = h + at\(^{2}\) and y = k + 2at.


Solved examples to find the parametric equations of a parabola:

1. Write the parametric equations of the parabola y\(^{2}\) = 12x.

Solution:

The given equation y\(^{2}\) = 12x is of the form of y\(^{2}\) = 4ax. On comparing the equation y\(^{2}\) = 12x with the equation y\(^{2}\) = 4ax we get, 4a = 12 ⇒ a = 3.

Therefore, the parametric equations of the given parabola are x = 3t\(^{2}\) and y = 6t.


2. Write the parametric equations of the parabola x\(^{2}\) = 8y.

Solution:

The given equation x\(^{2}\) = 8y is of the form of x\(^{2}\) = 4ay. On comparing the equation x\(^{2}\) = 8y with the equation x\(^{2}\) = 4ay we get, 4a = 8 ⇒ a = 2.

Therefore, the parametric equations of the given parabola are x = 4t and y = 2t\(^{2}\).

 

3. Write the parametric equations of the parabola (y - 2)\(^{2}\) = 8(x - 2).

Solution:

The given equation (y - 2)\(^{2}\) = 8(x - 2) is of the form of (y - k)\(^{2}\) = 4a(x - h). On comparing the equation (y - 2)\(^{2}\) = 8(x - 2) with the equation (y - k)\(^{2}\) = 4a(x - h) we get, 4a = 8 ⇒ a = 2 , h = 2 and k = 2.

Therefore, the parametric equations of the given parabola are x = 2t\(^{2}\) + 2 and y = 4t + 2.

● The Parabola




11 and 12 Grade Math 

From Parametric Equations of a Parabola to HOME PAGE





Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. 2nd Grade Place Value | Definition | Explanation | Examples |Worksheet

    Sep 14, 24 04:31 PM

    2nd Grade Place Value
    The value of a digit in a given number depends on its place or position in the number. This value is called its place value.

    Read More

  2. Three Digit Numbers | What is Spike Abacus? | Abacus for Kids|3 Digits

    Sep 14, 24 03:39 PM

    2 digit numbers table
    Three digit numbers are from 100 to 999. We know that there are nine one-digit numbers, i.e., 1, 2, 3, 4, 5, 6, 7, 8 and 9. There are 90 two digit numbers i.e., from 10 to 99. One digit numbers are ma

    Read More

  3. Worksheet on Three-digit Numbers | Write the Missing Numbers | Pattern

    Sep 14, 24 02:12 PM

    Reading 3-digit Numbers
    Practice the questions given in worksheet on three-digit numbers. The questions are based on writing the missing number in the correct order, patterns, 3-digit number in words, number names in figures…

    Read More

  4. Comparison of Three-digit Numbers | Arrange 3-digit Numbers |Questions

    Sep 13, 24 02:48 AM

    What are the rules for the comparison of three-digit numbers? (i) The numbers having less than three digits are always smaller than the numbers having three digits as:

    Read More

  5. Comparison of Two-digit Numbers | Arrange 2-digit Numbers | Examples

    Sep 12, 24 03:07 PM

     Compare 39 and 36
    What are the rules for the comparison of two-digit numbers? We know that a two-digit number is always greater than a single digit number. But, when both the numbers are two-digit numbers

    Read More