Subscribe to our YouTube channel for the latest videos, updates, and tips.


Math Problem Solver

Math problem solver can guide you to solve similar types of question. If you have any question which you find difficult to solve then you can fill-up the below comment box to to convey your message, so that math problem solver can help you.


1. Name the quadrant, if any, in which each point is located.

(a) (-3, 6)

(b) (7, -5)

Solution:


(a) (-3, 6) --------- II Quadrant.

(b) (7, -5) --------- IV Quadrant.


2. Complete the table for the given equation and graph the equation;

x + 2y = 5

Complete the Table







Solution:

x + 2y = 5

Put the value of x = 0 in the equation x + 2y = 5

0 + 2y = 5

2y = 5

2y/2 = 5/2

y = 5/2

(0, 5/2)

Put the value of y = 0,

x + 2 × 0 = 5

x = 5

(5, 0)

Put the value of x = 2,

2 + 2y = 5

2 – 2 + 2y = 5 - 2

2y = 3

2y/2 = 3/2

y = 3/2

(2, 3/2)

Put the value of y = 2,

x + 2 × 2 = 5

x + 4 = 5

x + 4 – 4 = 5 – 4

x = 1

(1, 2)

Table Value









3. Complete the table for the given equation and graph the equation;

6x-5y=30

Complete the Table Equation







Solution:

6x-5y=30

Put the value of x = 0 in the equation 6x - 5y = 30.

6 × 0 - 5y = 30

-5y = 30

-5y/-5 = 30/-5

y = -6

(0, -6)

Put the value of y = 0,

6x - 5 × 0 = 30

6x = 30

6x/6 = 30/6

x = 5

(5, 0)

Put the value of x = 3,

6 × 3 - 5y = 30

18 - 5y = 30

18 – 18 – 5y = 30 – 18

-5y = 12

-5y/-5 = 12/-5

y= -12/5

(3, -12/5)

Put the value of y = -2,

6x – 5(-2) = 30

6x + 10 = 30

6x + 10 – 10 = 30 – 10

6x = 20

6x/6 = 20/6

x = 10/3

(10/3, -2)

Table Value









4. Find the x-and y-intercepts of the following equations.

2x + 3y = 12

Solution:

2x + 3y = 12

Put the value of x = 0

2 × 0 + 3y = 12

3y = 12

3y/3 = 12/3

y = 4

Therefore, y-intercept = (0, 4)

Now, put the value of y = 0

2x + 3 × 0 = 12

2x = 12

2x/2 = 12/2

x = 6

Therefore, x-intercept = (6, 0)



5. Find the x-and y-intercepts of the following equations. x + y = -2

Solution:

x + y = -2

Put the value of x = 0

0 + y = -2

y = -2

Therefore, y-intercept = (0, -2)

Put the value of y = 0

x + 0 = -2

x = -2

Therefore, x-intercept = (-2, 0)


6. Find the midpoint of each segment with the given endpoints.

(-10, 4) and (7, 1)

Solution:

(-10, 4) and (7, 1)

Midpoint = [(x1 + x2)/2, (y1 + y2)/2]

Here, x1 = -10, x2 = 7, y1= 4 and y2 = 1

= [(-10 + 7)/2, (4 + 1)/2]

= (-3/2, 5/2)

Answer: (-3/2, 5/2)



7. Find the midpoint of each segment with the given endpoints.

(3,-6) and (6, 3)

Solution:


(3,-6) and (6, 3)

Midpoint = [(x1 + x2)/2, (y1 + y2)/2]

Here, x1 = 3, x2 = 6, y1= -6 and y2 = 3

= [(3 + 6)/2, (-6 + 3)/2]

= (9/2, -3/2)

Answer: (9/2, -3/2)


8. Decide whether the lines are parallel, perpendicular or neither.

x + 4y = 7 and 4x – y = 3

Solution:

x + 4y = 7

4y = -x + 7

y = (-1/4) x + 7

Slope of the equation x + 4y = 7 is -1/4.

Again, 4x – y = 3

y = 4x – 3

Slope of the equation 4x – y = 3 is 4.

Since multiplying both the slope of the equation = -1/4 × 4 = -1

Therefore, the given two equations are perpendicular to each other.

Answer: Perpendicular


9. The ship has coordinates (2,3) the equation of the other line is x+y=2 find the shortest distance from the ship to the line.

Solution:

x + y = 2

x + y – 2 = 0

Distance from (2, 3) to the line x + y – 2 = 0

= (2 + 3 – 2)/√(12 + 12)

= 3/√(1 + 1)

= 3/√2

= (3 × √2)/(√2 × √2)

= (3√2)/2 units.

Answer: (3√2)/2 units



10. Covert to scientific notation 0.000000373

Solution:


0.000000373

= 3.73 × 10-7

Answer: 3.73 × 10-7



11. Covert to decimal notation 5.347 x 10-8

Solution:


5.347 x 10-8

= 5.347/100000000

= 0.00000005347

Answer: 0.00000005347



12. Multiply and write the result in scientific notation

(3 x 105) (3 x 103)

Solution:


(3 x 105) (3 x 103)

= 9×105 + 3

= 3 × 3 × 105 × 103 = 9 × 108

Answer: 9 × 108


13. Simplify: 5 - 2 [8 - (2 x 2 - 4 x 4)]

Solution:


5 - 2 [8 - (2 x 2 - 4 x 4)]

= 5 - 2 [8 - (4 - 16)]

= 5 - 2 [8 - (-12)]

= 5 - 2 [8 + 12]

= 5 - 2 [20]

= 5 – 40

= -35

Answer: -35


14. Fill in the blank:

(a) The point with coordinates (0,0) is called ........of a rectangular coordinate system.

(b) To find the x-intercept of a line, we let....equal 0 and solve for ......; to find y-intercept, we let ......equal 0 and solve for.......

Solution:


(a) The point with coordinates (0,0) is called origin of a rectangular coordinate system.

(b) To find the x-intercept of a line, we let y equal 0 and solve for x ; to find y-intercept, we let x equal 0 and solve for y .



15. Name the quadrant, if any, in which each point is located.

(a) (1, 6)

(b) (-4, -2)

Solution:


(a) (1, 6) --------- I Quadrant.

(b) (-4, -2) --------- III Quadrant.


16. A restaurant meal for a group of people cost $85 total. This amount included a 6% tax and an 18% tip, both based on the price of the food. Which equation could be used to find f, the cost of the food?

A. 85 = 1.24f         B. 85 = 0.24c         C. 85 = 1.06f + 0.18         D. 85 = f + 0.24


17. Three friends share the cost of a pizza. The base price of the pizza is p and the extra toppings cost $4.50. If each person’s share was $7.15, which equation could be used to find p, the base price of the pizza?

A. 7.15 = 3p - 4.50  

B. 7.15 = 1/3(p + 4.50) 

C. 7.15 = 1/3p + 4.50

D. 7.15 = 3(p + 4.50)

Answer: B. 7.15 = 1/3(p + 4.50)


18. A tile setter is joining the angles of two tiles, A and B, to make a 90-degree angle. The degree measure of Angle A can be represented as 3y + 2 and of Angle B as 5y. Which equation represents this situation?

A. 90 = 3y +2 – 5y     B. 3y + 2 = 90 + 5y     C. 90 = 8y + 2     D. 5y + 2 = 90 + 3y

Answer: C. 90 = 8y + 2


19. One-fourth of the distance between two cities is 100 miles less than two-thirds the distance between the cities. Which equation expresses this situation?

1/4d - 100 = 2/3d ,

1/4d = 2/3d -100,

1/4d = 2/3d +100,

1/4d - 2/3d = 100

Answer: 1/4d = 2/3d -100


20. What value of b makes the equation that follows true?

x2 + bx – 35 = (x + 5)(x – 7)

A. -2        B. 12       C. 2       D. -12

Answer: A. -2 

Math Questions Answers
Help with Math Problems
Answer Math Problems
Math Problem Solver
Math Unsolved Questions
Math Questions
Math Word Problems
Word Problems on Speed Distance Time
Algebra Word Problems – Money


Math Problem Answers Index

From Math Problem Solver to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Speed Distance and Time | Relation between Speed Distance and Time

    May 21, 25 12:58 PM

    Speed is defined as the distance covered per unit time. Speed = (Distance Travelled)/(Time Taken) Or, S = D/T. Speed also requires a unit of measurement. If the distance is in kilometres

    Read More

  2. Math Problem Answers | Solved Math Questions and Answers | Free Math

    May 21, 25 12:45 PM

    Partial fraction
    Math problem answers are solved here step-by-step to keep the explanation clear to the students. In Math-Only-Math you'll find abundant selection of all types of math questions for all the grades

    Read More

  3. Test of Divisibility | Divisibility Rules| Divisible by 2, 3, 5, 9, 10

    May 21, 25 10:29 AM

    The test of divisibility by a number ‘x’ is a short-cut method to detect whether a particular number ‘y’ is divisible by the number ‘x’ or not. Test of divisibility by 2: A number is divisible by 2

    Read More

  4. Divisible by 7 | Test of Divisibility by 7 |Rules of Divisibility by 7

    May 21, 25 10:17 AM

    Divisible by 7
    Divisible by 7 is discussed below: We need to double the last digit of the number and then subtract it from the remaining number. If the result is divisible by 7, then the original number will also be

    Read More

  5. Average Word Problems | Worksheet on Average Questions with Answers

    May 20, 25 05:40 PM

    In average word problems we will solve different types of problems on basic concept of average. 1. Richard scored 80, 53, 19, 77, 29 and 96 runs in 6 innings in a series. Find the average runs scored…

    Read More