Important Properties on Circle

The two important properties on circle are stated below:

1. The ratio of the circumference to the diameter of any circle is constant and the value of this constant is denoted by the Greek letter π.

Therefore, the circumference of any circle/diameter of that circle = constant = π
or, the circumference of any circle = π × diameter of that circle.
If r be the radius of the circle then its diameter is 2r. 
Therefore, the circumference of the circle = π ∙ 2r = 2πr. 
The constant quantity π is an incommensurable number i.e., it cannot be expressed as the ratio of two positive integers. An approximate value or π is 27/7; a more accurate value of π is 355/133 or, 3.14159 (correct to five places of decimals).

2. Angles at the center of a circle are proportional to the lengths of the arcs which subtend those angles.

The above two important properties on circle will help us to prove that a radian is a constant angle.

Click Here to know how to prove that “a radian is a constant angle”.

Measurement of Angles





11 and 12 Grade Math

From Important Properties on Circle to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. How to Do Long Division? | Method | Steps | Examples | Worksheets |Ans

    Jan 23, 25 02:43 PM

    Long Division and Short Division Forms
    As we know that the division is to distribute a given value or quantity into groups having equal values. In long division, values at the individual place (Thousands, Hundreds, Tens, Ones) are dividend…

    Read More

  2. Long Division Method with Regrouping and without Remainder | Division

    Jan 23, 25 02:25 PM

    Dividing a 2-Digits Number by 1-Digit Number With Regrouping
    We will discuss here how to solve step-by-step the long division method with regrouping and without remainder. Consider the following examples: 468 ÷ 3

    Read More

  3. Long Division Method Without Regrouping and Without Remainder | Divide

    Jan 23, 25 10:44 AM

    Dividing a 2-Digits Number by 1-Digit Number
    We will discuss here how to solve step-by-step the long division method without regrouping and without remainder. Consider the following examples: 1. 848 ÷ 4

    Read More

  4. Relationship between Multiplication and Division |Inverse Relationship

    Jan 23, 25 02:00 AM

    We know that multiplication is repeated addition and division is repeated subtraction. This means that multiplication and division are inverse operation. Let us understand this with the following exam…

    Read More

  5. Divide by Repeated Subtraction | Division as Repeated Subtraction

    Jan 22, 25 02:23 PM

    Divide by Repeated Subtraction
    How to divide by repeated subtraction? We will learn how to find the quotient and remainder by the method of repeated subtraction a division problem may be solved.

    Read More