Subscribe to our YouTube channel for the latest videos, updates, and tips.


Problems Based on Systems of Measuring Angles

Problems based on systems of measuring angles will help us to learn converting one measuring systems to other measuring systems. We know, the three different systems are Sexagesimal System, Centesimal System and Circular System. The examples will help us to solve various types of problems involving the three different systems of measuring angles.


Worked-out problems based on systems of measuring angles:

1. Find in sexagesimal, centesimal and circular units an internal angle of a regular Hexagon.

Solution:

We know that the sum of the internal angles of a polygon of n sides = (2n - 4) rt. angles.

Therefore, the sum of the six internal angles of a regular pentagon = (2 ×  6 - 4) = 8 rt. angles.

Hence, each internal angle of the Hexagon = 8/6 rt. angles.  =  4/3 rt. angles.

Therefore, each internal angle of the regular Hexagon in sexagesimal system measures 4/3  ×   90°,  (Since, 1 rt. angle = 90°) = 120°;

In centesimal system measures

4/3 × 100g (Since, 1 rt. angle = 100g)

= (400/3)g

= 1331/3

and in circular system measures (4/3 × π/2)c, [Since, 1 rt. angle = πc/2]

= (2π/3)c.


2. Two regular polygons have sides m and n respectively. If the number of degrees in an angle of the first is equal to the number of grades in an angle of the second, show that,      

20/n - 18/m = 1.

Solution:

Sum of the internal angles of a regular polygon of m sides = (2m - 4) rt. angles.

Therefore, one angle of a regular polygon of m sides measures (2m - 4)/m rt. angles. 

Similarly, one angle of a regular polygon of n sides measures (2n - 4)/n rt. angles.

By question, [(2m - 4)/m]  × 90 = [(2n - 4)/n] × 100            

                                             [Since, 1 rt. angle = 90° = 100g]

or, (1 - 2/m)  × 180 = (1 - 2/n) × 200

or, 9 - 18/m = 10 - 20/n  

or, 20/n - 18/m = 1.  Proved

Measurement of Angles





11 and 12 Grade Math

From Problems Based on Systems of Measuring Angles to
HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Conversion of Improper Fractions into Mixed Fractions |Solved Examples

    May 12, 25 04:52 AM

    Conversion of Improper Fractions into Mixed Fractions
    In conversion of improper fractions into mixed fractions, we follow the following steps: Step I: Obtain the improper fraction. Step II: Divide the numerator by the denominator and obtain the quotient…

    Read More

  2. Multiplication Table of 6 | Read and Write the Table of 6 | Six Table

    May 12, 25 02:23 AM

    Multiplication Table of Six
    Repeated addition by 6’s means the multiplication table of 6. (i) When 6 bunches each having six bananas each. By repeated addition we can show 6 + 6 + 6 + 6 + 6 + 6 = 36 Then, six 6 times or 6 sixes

    Read More

  3. Word Problems on Decimals | Decimal Word Problems | Decimal Home Work

    May 11, 25 01:22 PM

    Word problems on decimals are solved here step by step. The product of two numbers is 42.63. If one number is 2.1, find the other. Solution: Product of two numbers = 42.63 One number = 2.1

    Read More

  4. Worksheet on Dividing Decimals | Huge Number of Decimal Division Prob

    May 11, 25 11:52 AM

    Worksheet on Dividing Decimals
    Practice the math questions given in the worksheet on dividing decimals. Divide the decimals to find the quotient, same like dividing whole numbers. This worksheet would be really good for the student…

    Read More

  5. Worksheet on Multiplying Decimals | Product of the Two Decimal Numbers

    May 11, 25 11:18 AM

    Practice the math questions given in the worksheet on multiplying decimals. Multiply the decimals to find the product of the two decimal numbers, same like multiplying whole numbers.

    Read More