Subscribe to our YouTube channel for the latest videos, updates, and tips.


Length of an Arc

The examples will help us to understand to how find the length of an arc using the formula of ‘s is equal to r theta’.


Worked-out problems on length of an arc:

1.  In a circle of radius 6 cm, an arc of certain length subtends 20° 17’ at the center. Find in sexagesimal unit the angle subtended by the same arc at the center of a circle of radius 8 cm. 

Solution: 

Let an arc of length be m cm subtends 20° 17’ at the center of a circle of radius 6 cm and α° at the center of a circle of radius 8 cm. 

Now, 20° 17’ = {20 (17/60)}° 

= (1217/60)°

= 1217π/(60 × 180) radian [since, 180° = π radian]

And α° = πα/180 radian

We know, the formula, s = rθ then we get,

When the circle of radius is 6 cm; m = 6 × [(1217π)/(60 × 180)] ………… (i)

And when the circle of radius 8 cm; m = 8 × (πα)/180 …………… (ii)    

Therefore, from (i) and (ii) we get;

8 × (πα)/180 = 6 × [(1217π)/(60 × 180)]

or, α = [(6/8) × (1217/60)]°

or, α = (3/4) ×  20° 17’   [since, (1217/60)° = 20° 17’]

or, α = 3 × 5°4’ 15”

or, α = 15° 12’ 45”.

Therefore, the required angle in sexagesimal unit = 15° 12’ 45”.

2. Aaron is running along a circular track at the rate of 10 mile per hour traverses in 36 seconds an arc which subtends 56° at the center. Find the diameter of the circle.

Solution:

One hour = 3600 seconds

One mile = 5280 feet

Therefore, 10 miles = (5280 × 10) feet = 52800 feet

In 3600 seconds Aaron goes 52800 feet

In 1 second Aaron goes 52800/3600 feet = 44/3 feet 

Therefore, in 36 seconds the Aaron goes (44/3) × 36 feet = 528 feet.

Clearly, an arc of length 528 feet subtends 56° = 56 × π/180 radian at the center of the circular track. If ‘y’ feet is the radius of the circular track then using the formula s = rθ we get,

y = s/θ

y = 528/[56 × (π/180)]

y = (528 × 180 × 7)/(56 × 22) feet

y = 540 feet

y = (540/3) yards   [since, we know that 3 foot = 1 yard]

y = 180 yards

Therefore, the required diameter = 2 × 180 yards = 360 yards.


3. If α1, α2, α3 radians be the angles subtended by the arcs of lengths l1, l2, l3 at the centers of the circles whose radii are r1, r2, r3 respectively then show that the angle subtended at the centre by the arc of length (l1 + l2 + l3) of a circle whose radius is (r1 + r2 + r3) will be (r1 α1 + r2α2 + r3α3)/(r1 + r2 + r3) radian.

Solution:

According to the problem, the length of an arc l1 of a circle of radius r1 subtends an angle α1 at its center. Hence, using the formula, s = rθ we get,

l1 = r1α1.

Similarly, l2 = r2α2

and l3 = r3 α3.

Therefore, , l1 + l2 + l3 = r1α1 + r2α2 + r3α3.

Let an arc of length (l1 + l2 + l3) of a circle of radius (r1 + r2 + r3) subtend an angle α radian at its center.

Then, α = (l1 + l2 + l3)/(r1 + r2 + r3)

Now, put the value of l1 = r1α1, l2 = r2α2 and l3 = r3α3.

or, α = (r1α1 + r2α2 + r3α3)/(r1 + r2 + r3) radian. Proved.

To solve more problems on length of an arc follow the proof on 'Theta equals s over r'.

 Measurement of Angles





11 and 12 Grade Math

From Length of an Arc to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 8 Times Table | Multiplication Table of 8 | Read Eight Times Table

    May 18, 25 04:33 PM

    Printable eight times table
    In 8 times table we will memorize the multiplication table. Printable multiplication table is also available for the homeschoolers. 8 × 0 = 0 8 × 1 = 8 8 × 2 = 16 8 × 3 = 24 8 × 4 = 32 8 × 5 = 40

    Read More

  2. Worksheet on Average | Word Problem on Average | Questions on Average

    May 17, 25 05:37 PM

    In worksheet on average interest we will solve 10 different types of question. Find the average of first 10 prime numbers. The average height of a family of five is 150 cm. If the heights of 4 family

    Read More

  3. How to Find the Average in Math? | What Does Average Mean? |Definition

    May 17, 25 04:04 PM

    Average 2
    Average means a number which is between the largest and the smallest number. Average can be calculated only for similar quantities and not for dissimilar quantities.

    Read More

  4. Problems Based on Average | Word Problems |Calculating Arithmetic Mean

    May 17, 25 03:47 PM

    Here we will learn to solve the three important types of word problems based on average. The questions are mainly based on average or mean, weighted average and average speed.

    Read More

  5. Rounding Decimals | How to Round a Decimal? | Rounding off Decimal

    May 16, 25 11:13 AM

    Round off to Nearest One
    Rounding decimals are frequently used in our daily life mainly for calculating the cost of the items. In mathematics rounding off decimal is a technique used to estimate or to find the approximate

    Read More