Estimating a Sum

We will learn the basic knowledge for estimating a sum. Here we will learn an easy way to estimate a sum of two numbers by rounding.

In case of two digit numbers we can only round the number to the nearest tens place i.e. only one place estimate.

For example, let us estimate the following sums:

(i) 47 + 32

We need to round the number to the nearest 10.

47 → 50

32 → 30

50 + 30 = 80

(ii) 25 + 34

We need to round the number to the nearest 10.

25 → 30

34 → 30

30 + 30 = 60


(iii) 75 + 13

We need to round the number to the nearest 10.

75 → 80

13 → 10

80 + 10 = 90


To estimate the sum we round-off each number to the nearest tens and then add the rounded-off numbers.

Let us estimate 38 + 23.

38 is nearer to 40 than 30.

So, 38 is rounded up to 40.

The number 23 is nearer to 20 than 30.

So, 23 is rounded down to 20.

Estimating the Sum

Estimate the Sum to the Nearest 10 Video

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Solved Examples on Estimating the Sum:

1. Estimate the sums of 72 and 48

Solution:

We round the number to the nearest 10.

72 → 70

48 → 50

So, 72 is nearest to 70 and 48 is nearest to 50

70 + 50 = 120

Thus the estimated sum = 120


2. Estimate the sums to the nearest ten and also find the actual sum of 87 and 79.

Solution:

We round the number to the nearest 10.

87 → 90

79 → 80

So, 87 is nearest to 90 and 79 is nearest to 80

90 + 80 = 170

Thus the estimated sum = 170

The actual sum of 87 and 79

87 + 79 = 166

Thus the actual sum = 166

Note: To estimate to the nearest 10, we see the digit/number at one’s place. It is converted to 0 or 10 as proper. If the digit/number is < 10/2, it is converted to zero and if it is > 10/2, it is converted to 10.


Estimating the Sum of 3-Digit Numbers:

In case of three digit numbers we can only round the number to the nearest tens place i.e. only one place estimate.

For example, let us estimate the following sums:

1. Estimate the sums of 586 and 120

Solution:

We round the number to the nearest hundred.

586 → 600

120 → 100

So, 586 is nearest to hundred is 600 and 120 is nearest to hundred 100

600 + 100 = 700

Thus the estimated sum to nearest hundred = 700


We round the number to the nearest tens.

586 → 590

120 → 120

So, 586 is nearest to ten is 590 and 120 is nearest to hundred 120

590 + 120 = 710

Thus the estimated sum to nearest ten = 710


We have learnt rounding off numbers. We can use the rounding off to estimate the sum of two numbers. Rounding off to the nearest ten will result in the estimated answer to be closest to the actual one.

2. Estimate the sum of 415 and 214 to the nearest 10's.

Solution:

Rounding off the numbers to the nearest 10's, we get

415      420

214      210

Now, 420 + 210 = 630

Thus, the estimated sum is 630.


3. Round off the numbers 389 and 535 to the nearest 100s. Find the estimated and the actual sum.

Solution:

Rounding off the numbers to nearest 100s

Estimating a Sum

Hence, 400 + 500 = 900 is the estimated sum.


4. Estimate the sum of 1235 and 1695 to the nearest 100's.

Solution:

Rounding off the numbers to the nearest 100's, we get

1235     →     1200

1695     →     1700

Now, 1200 + 1700 = 2900

Thus, the estimated sum is 2900.


In general

When we add two 2-digit numbers we begin adding from the ones place.

For estimating the sum of two 2-digit numbers, just add the tens place and add ten more. The actual answer may be a little more or a little less, but the difference will never be more than 10. That is a fair estimate.


5. Estimate the sum of 34 and 22.

Solution:


Step I:
Add the tens.

           30 + 20 = 50

Step II: Add 10 to the sum obtained in step I.

            50 + 10 = 60

       Actual Sum

           3     4

     +    2     2

           5     6

Thus, we say that the sum of 34 and 22 is about 60.


6. There are 45 mangoes and 28 oranges in a bag. About how many fruits are there in the bag?

Solution:

Step I: Add the tens.

4 tens + 2 tens = 6 tens.

40 + 20 = 60

Step II: Add 10 to the sum obtained in step I.

60 + 10 = 70

So, there are about 70 fruits in the bag.

       Actual Sum

           4     5

     +    2     8

           7     3


Worksheet on Estimating a Sum:

I. Estimate the sum. One has been done for you.

(i) 19 + 23

Estimating Sum

(ii) 27 + 44

(iii) 54 + 36

(iv) 41 + 38

(v) 52 + 17

(vi) 26 + 28


Answer:

I. (ii) 30 + 40 = 70

(iii) 50 + 40 = 90

(iv) 40 + 40 = 80

(v) 50 + 20 = 70

(vi) 30 + 30 = 60


II. Round off the given numbers to the nearest 100s. Find the estimated and the actual sum.

Estimated Sum

Actual Sum

(i) 582 and 157

__________

__________

(ii) 245 and 163

__________

__________

(iii) 812 and 111

__________

__________

(iv) 345 and 198

__________

__________

Answer:

II. (i) 800, 739

(ii) 400, 408

(iii) 900, 923

(iv) 500, 543


III. First find the actual sum and then estimated sum:

Actual Sum and Estimated Sum

Answer:

III. (i) 60; 60

(ii) 80; 90

(iii) 934; 930

(iv) 958; 960


IV. Estimate the sum to the nearest 10's by first rounding off the numbers:

(i) 348 + 472

(ii) 2651 + 1279

(iii) 1295 + 2365


Answer:

IV. (i) 820

(ii) 3930

(iii) 3670

You might like these



3rd Grade Math Lessons

From Estimating a Sum to HOE PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Construction of Bar Graphs | Examples on Construction of Column Graph

    Jul 30, 25 03:20 PM

    What is Bar Graph?
    Now we will discuss about the construction of bar graphs or column graph. In brief let us recall about, what is bar graph? Bar graph is the simplest way to represent a data. In consists of rectangular…

    Read More

  2. Successor and Predecessor | Successor of a Whole Number | Predecessor

    Jul 29, 25 12:59 AM

    Successor and Predecessor
    The number that comes just before a number is called the predecessor. So, the predecessor of a given number is 1 less than the given number. Successor of a given number is 1 more than the given number…

    Read More

  3. Worksheet on Area, Perimeter and Volume | Square, Rectangle, Cube,Cubo

    Jul 28, 25 01:52 PM

    Volume of a Cuboids
    In this worksheet on area perimeter and volume you will get different types of questions on find the perimeter of a rectangle, find the perimeter of a square, find the area of a rectangle, find the ar…

    Read More

  4. Worksheet on Volume of a Cube and Cuboid |The Volume of a RectangleBox

    Jul 25, 25 03:15 AM

    Volume of a Cube and Cuboid
    We will practice the questions given in the worksheet on volume of a cube and cuboid. We know the volume of an object is the amount of space occupied by the object.1. Fill in the blanks:

    Read More

  5. Volume of a Cuboid | Volume of Cuboid Formula | How to Find the Volume

    Jul 24, 25 03:46 PM

    Volume of Cuboid
    Cuboid is a solid box whose every surface is a rectangle of same area or different areas. A cuboid will have a length, breadth and height. Hence we can conclude that volume is 3 dimensional. To measur…

    Read More