Theorem on Properties of Triangle

Proof the theorems on properties of triangle \(\frac{p}{sin P}\) = \(\frac{q}{sin Q}\) = \(\frac{r}{sin R}\) = 2K

Proof:

Let O be the circum-centre and K the circum-radius of any triangle PQR.

Since in triangle PQR, three angles are acute in figure (i), then we observe that the triangle PQR is acute-angled in figure (ii), the triangle PQR is obtuse-angled (since its angle P is obtuse) and in figure (iii), the triangle PQR is right-angled (since the angle P is right angle). In figure (i) and figure (ii) we join QO and produce it to meet the circumference at S. Then join RS.

Clearly, QO = circum-radius = K  

Therefore, QS   = 2 ∙ QO = 2K and ∠QRS = 90° (being the semi-circular angle).

Now, from figure (i)we get,

∠QSR = ∠QPR = P (being the angles on the same arc QR).

Therefore, from the triangle QRS we have,

QR/QS = sin ∠QSR

⇒ p/2K = sin P 

⇒  p/sin P = 2K

Again, from figure (ii) we get,

∠QSR = π - P [Since, ∠QSR + ∠QPR = π]

Therefore, from the triangle QRS we get,

QR/QS = sin ∠QSR

⇒ p/2K = sin (π - P)

⇒ p/2K = sin P

⇒ a/sin P = 2K

Finally, for right-angled triangle, we get from figure (iii),

2K = p = p/sin 90° = p/sin P    [Since, P = 90°]

Therefore, for any triangle PQR (acute-angled, or obtuse-angled or right-angled) we have,

Similarly, if we join PO and produce it to meet the circumference at T then joining RT and QE we can prove 

q/sin Q = 2K and  r/sin R = 2K …………………………….. (1)

Therefore, in any triangle PQR we have,

\(\frac{p}{sin P}\) = \(\frac{q}{sin Q}\) = \(\frac{r}{sin R}\) = 2K


Note: (i) The relation \(\frac{p}{sin P}\) = \(\frac{q}{sin Q}\) = \(\frac{r}{sin R}\) is known as Sine Rule.

(ii) Since, p : q : r = sin P : sin Q : sin R

Therefore, in any triangle the lengths of sides are proportional to the sines of opposite angles.

(iii) From (1) we get, p = 2K sin P, q = 2K sin Q and r = 2K sin R. These relations give the sides in terms of sines of angles.

Again, from (1) we get, sin P = p/2K, sin Q = q/2K and sin R = r/2K  

These relations give the sines of the angles in terms of the sides of any triangle.

Solved problems using theorem on properties of triangle:

1. In the triangle PQR, if P = 60°, show that,

                        q + r = 2p cos \(\frac{Q - R}{2}\)   

Solution:

We have,

We know that

\(\frac{p}{sin P}\) = \(\frac{q}{sin Q}\) = \(\frac{r}{sin R}\) = 2K.

⇒ p = 2K sin P, q = 2K sin Q and r = 2K sin R.

\(\frac{q + r}{2p}\) = \(\frac{2K sin Q + 2K sin R}{2  ∙ 2K sin P}\), [Since, p = 2K sin P, q = 2K sin Q and r = 2K sin R]

      = \(\frac{sin Q + sin R}{2 sin P}\)

      = \(\frac{2 sin \frac{Q + R}{2} cos \frac{Q - R}{2}}{2 sin 60°}\)

      = \(\frac{sin 60° cos \frac{Q - R}{2}}{sin 60°}\),

[Since, P + Q + R = 180°, and P = 60° Therefore, Q + R = 180° - 60° = 120° ⇒ \(\frac{Q + R}{2}\) = 60°]

⇒ \(\frac{q + r}{2p}\) = cos \(\frac{Q - R}{2}\)           

Therefore, q + r = 2p cos \(\frac{Q - R}{2}\)        proved.


2. In any triangle PQR, prove that,

      (q\(^{2}\) - r\(^{2}\)) cot P + (r\(^{2}\) - p\(^{2}\)) cot Q + (p\(^{2}\) - q\(^{2}\)) cot R = 0.

Solution:

\(\frac{p}{sin P}\) = \(\frac{q}{sin Q}\) = \(\frac{r}{sin R}\) = 2K.

⇒ p = 2K sin P, q = 2K sin Q and r = 2K sin R.

Now, (q\(^{2}\) - r\(^{2}\)) cot P = (4K\(^{2}\) sin\(^{2}\) Q - 4K\(^{2}\) sin\(^{2}\) R) cot P                                  

= 2K\(^{2}\) (2 sin\(^{2}\) Q - 2 sin\(^{2}\) R)

= 2K\(^{2}\) (1 - cos 2Q - 1 + cos 2R) cot P

= 2K\(^{2}\) [2 sin (Q + R) sin (Q - R)] cot P

=4K\(^{2}\) sin (π - P) sin (Q - R) cot A, [Since, P + Q + R = π]

= 4K\(^{2}\) sin P sin (Q - R) \(\frac{cos P}{sin P}\)

= 4K\(^{2}\) sin (Q - R) cos {π - (Q - R)}

= - 2K\(^{2}\) ∙ 2sin (Q - R) cos (Q + R)

= - 2K\(^{2}\) (sin 2Q - sin 2R)

Similarly, (r\(^{2}\) - p\(^{2}\)) cot Q = -2K\(^{2}\) (sin 2R - sin 2P)

and (p\(^{2}\) - q\(^{2}\)) cot R = -2K\(^{2}\) (sin 2R - sin 2Q)

Now L.H.S. = (q\(^{2}\) - r\(^{2}\)) cot P + (r\(^{2}\) - p\(^{2}\)) cot Q + (p\(^{2}\) - q\(^{2}\)) cot R

= - 2K\(^{2}\) (sin 2Q - sin 2R) - 2K\(^{2}\) (sin 2R - sin 2P) - 2K\(^{2}\)(sin 2P - sin 2Q)

= - 2K\(^{2}\) × 0

= 0 = R.H.S.                        Proved.

 Properties of Triangles




11 and 12 Grade Math

From Theorem on Properties of Triangle to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Perimeter of a Square | How to Find the Perimeter of Square? |Examples

    Apr 25, 24 05:34 PM

    Perimeter of a Square
    We will discuss here how to find the perimeter of a square. Perimeter of a square is the total length (distance) of the boundary of a square. We know that all the sides of a square are equal. Perimete…

    Read More

  2. Perimeter of a Triangle | Perimeter of a Triangle Formula | Examples

    Apr 25, 24 05:13 PM

    Perimeter of a Triangle
    We will discuss here how to find the perimeter of a triangle. We know perimeter of a triangle is the total length (distance) of the boundary of a triangle. Perimeter of a triangle is the sum of length…

    Read More

  3. Perimeter of a Rectangle | How to Find the Perimeter of a Rectangle?

    Apr 25, 24 03:45 PM

    Perimeter of a Rectangle
    We will discuss here how to find the perimeter of a rectangle. We know perimeter of a rectangle is the total length (distance) of the boundary of a rectangle. ABCD is a rectangle. We know that the opp…

    Read More

  4. Dividing 3-Digit by 1-Digit Number | Long Division |Worksheet Answer

    Apr 24, 24 03:46 PM

    Dividing 3-Digit by 1-Digit Number
    Dividing 3-Digit by 1-Digit Numbers are discussed here step-by-step. How to divide 3-digit numbers by single-digit numbers? Let us follow the examples to learn to divide 3-digit number by one-digit nu…

    Read More

  5. Symmetrical Shapes | One, Two, Three, Four & Many-line Symmetry

    Apr 24, 24 03:45 PM

    Symmetrical Figures
    Symmetrical shapes are discussed here in this topic. Any object or shape which can be cut in two equal halves in such a way that both the parts are exactly the same is called symmetrical. The line whi…

    Read More