Square of Identities Involving Squares of Sines and Cosines

We will learn how to solve identities involving square of sines and cosines of multiples or submultiples of the angles involved.

We use the following ways to solve the identities involving square of sines and cosines.

(i) Express the first two squares of L.H.S. in terms of cos 2A (or cos A).

(ii) Either retain the third term unchanged or make a change using the formula sin\(^{2}\) A+ cos\(^{2}\) A = 1.

(iii) Keeping the numericais (if any) apart, express the sum of two cosines in the form of product.

(iv) Then use the condition A + B + C = π (or A + B + C = \(\frac{π}{2}\))and take one sine or cosine term common.

(v) Finally, express the sum or difference of two sines (or cosines) in the brackets as product.

1. If A + B + C = π, prove that,

cos\(^{2}\) A + cos\(^{2}\) B - cos\(^{2}\) C = 1 - 2 sin A sin B cos C.

Solution:

L.H.S. =  cos\(^{2}\) A + cos\(^{2}\) B - cos\(^{2}\) C

= cos\(^{2}\) A + (1 - sin\(^{2}\) B) - cos\(^{2}\) C

= 1 + [cos\(^{2}\) A - sin\(^{2}\) B] - cos\(^{2}\) C

= 1 + cos (A + B) cos (A - B) - cos\(^{2}\) C

= 1 + cos (π - C) cos (A - B) - cos\(^{2}\) C, [Since A + B + C = π ⇒ A + B = π - C]

= 1 - cos C cos (A - B) - cos\(^{2}\) C

= 1 - cos C [cos (A - B) + cos C]

= 1 - cos C [cos (A - B) + cos {π - (A + B)}], [Since A + B + C = π ⇒ C = π - (A + B)]

= 1 - cos C [cos (A - B) - cos (A + B)]

= 1 - cos C [2 sin A sin B]

= 1 - 2 sin A sin B cos C = R.H.S.                    Proved.


2. If A + B + C = π, prove that,

sin\(^{2}\) \(\frac{A}{2}\) + sin\(^{2}\) \(\frac{A}{2}\) + sin\(^{2}\) \(\frac{A}{2}\) = 1 - 2 sin \(\frac{A}{2}\) - sin \(\frac{B}{2}\) sin \(\frac{C}{2}\)

Solution:

L.H.S. = sin\(^{2}\) \(\frac{A}{2}\) + sin\(^{2}\) \(\frac{B}{2}\) + sin\(^{2}\) \(\frac{C}{2}\)

= \(\frac{1}{2}\)(1 - cos A) + \(\frac{1}{2}\)(1 - cos B) + sin\(^{2}\) \(\frac{C}{2}\), [Since, 2 sin\(^{2}\) \(\frac{A}{2}\) = 1 - cos A                   

⇒ sin\(^{2}\) \(\frac{A}{2}\) = \(\frac{1}{2}\)(1 - cos A)

Similarly, sin\(^{2}\)  \(\frac{B}{2}\) = \(\frac{1}{2}\)( 1 - cos B)]

= 1 - \(\frac{1}{2}\)(cos A + cos B) + sin\(^{2}\) \(\frac{C}{2}\)

= 1 -  \(\frac{1}{2}\) ∙ 2 cos \(\frac{A + B}{2}\)  ∙ cos \(\frac{A - B}{2}\) + sin\(^{2}\) \(\frac{C}{2}\)

=1 - sin \(\frac{C}{2}\)  cos \(\frac{A - B}{2}\)  + sin 2 \(\frac{C}{2}\)

[A + B + C = π ⇒ \(\frac{A + B}{2}\) = \(\frac{π}{2}\)  - \(\frac{C}{2}\).

 Therefore, cos \(\frac{A + B}{2}\) = cos (\(\frac{π}{2}\)  - \(\frac{C}{2}\)) = sin \(\frac{C}{2}\)]

= 1 - sin \(\frac{C}{2}\)[cos \(\frac{A - B}{2}\) - sin \(\frac{C}{2}\)]

= 1 - sin \(\frac{C}{2}\)[cos \(\frac{A - B}{2}\) - cos \(\frac{A + B}{2}\)]   [Since, sin \(\frac{C}{2}\) = cos \(\frac{A + B}{2}\)]

= 1 - sin \(\frac{C}{2}\)[2 sin \(\frac{A}{2}\) ∙ sin \(\frac{B}{2}\)]

= 1 - 2 sin \(\frac{A}{2}\) sin \(\frac{B}{2}\) sin \(\frac{C}{2}\) = R.H.S.                    Proved.

 

3. If A + B + C = π, prove that,

cos\(^{2}\)  \(\frac{A}{2}\)  + cos\(^{2}\) \(\frac{B}{2}\) - cos\(^{2}\) \(\frac{C}{2}\)  = 2 cos \(\frac{A}{2}\) cos \(\frac{B}{2}\)  sin \(\frac{C}{2}\)

Solution:

L.H.S. = cos\(^{2}\)  \(\frac{A}{2}\)  + cos\(^{2}\) \(\frac{B}{2}\) - cos\(^{2}\) \(\frac{C}{2}\)

= \(\frac{1}{2}\)(1 + cos A) + \(\frac{1}{2}\)(1 + cos B) - cos\(^{2}\) \(\frac{C}{2}\), [Since, 2 cos\(^{2}\) \(\frac{A}{2}\)  = 1 + cos A  ⇒ cos\(^{2}\) \(\frac{A}{2}\) = \(\frac{1}{2}\)(1 + cos A)

Similarly, cos\(^{2}\) \(\frac{B}{2}\) = \(\frac{1}{2}\)(1 + cos B)]

=  1 + \(\frac{1}{2}\)(cos A + cos B) - cos\(^{2}\) \(\frac{C}{2}\)

= 1 + \(\frac{1}{2}\) ∙ 2 cos \(\frac{A + B}{2}\) cos \(\frac{A - B}{2}\) - 1 + sin\(^{2}\)  \(\frac{C}{2}\)

= cos \(\frac{A + B}{2}\) cos \(\frac{A - B}{2}\) + sin\(^{2}\)  \(\frac{C}{2}\)

= sin C/2 cos \(\frac{A - B}{2}\) + sin\(^{2}\)  \(\frac{C}{2}\)

[Since, A + B + C = π ⇒ \(\frac{A + B}{2}\)  = \(\frac{π}{2}\) - \(\frac{C}{2}\).

Therefore, cos (\(\frac{A + B}{2}\)) = cos (\(\frac{π}{2}\) - \(\frac{C}{2}\)) = sin \(\frac{C}{2}\)]

= sin \(\frac{C}{2}\) [cos \(\frac{A - B}{2}\) + sin \(\frac{C}{2}\)]

= sin \(\frac{C}{2}\) [cos \(\frac{A - B}{2}\) + cos \(\frac{A + B}{2}\)], [Since, sin \(\frac{C}{2}\) = cos \(\frac{A - B}{2}\)]

= sin \(\frac{C}{2}\) [2 cos \(\frac{A}{2}\) cos \(\frac{B}{2}\)]

= 2 cos \(\frac{A}{2}\) cos \(\frac{B}{2}\) sin \(\frac{C}{2}\) = R.H.S.          Proved.

 Conditional Trigonometric Identities






11 and 12 Grade Math

From Square of Identities Involving Squares of Sines and Cosines to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Dividing 3-Digit by 1-Digit Number | Long Division |Worksheet Answer

    Apr 24, 24 03:46 PM

    Dividing 3-Digit by 1-Digit Number
    Dividing 3-Digit by 1-Digit Numbers are discussed here step-by-step. How to divide 3-digit numbers by single-digit numbers? Let us follow the examples to learn to divide 3-digit number by one-digit nu…

    Read More

  2. Symmetrical Shapes | One, Two, Three, Four & Many-line Symmetry

    Apr 24, 24 03:45 PM

    Symmetrical Figures
    Symmetrical shapes are discussed here in this topic. Any object or shape which can be cut in two equal halves in such a way that both the parts are exactly the same is called symmetrical. The line whi…

    Read More

  3. Mental Math on Geometrical Shapes | Geometry Worksheets| Answer

    Apr 24, 24 03:35 PM

    In mental math on geometrical shapes we will solve different type of problems on simple closed curves, polygons, basic geometrical concepts, perpendicular lines, parallel lines, circle, terms relates…

    Read More

  4. Circle Math | Terms Related to the Circle | Symbol of Circle O | Math

    Apr 24, 24 02:57 PM

    Circle using a Compass
    In circle math the terms related to the circle are discussed here. A circle is such a closed curve whose every point is equidistant from a fixed point called its centre. The symbol of circle is O. We…

    Read More

  5. Fundamental Geometrical Concepts | Point | Line | Properties of Lines

    Apr 24, 24 12:38 PM

    Point P
    The fundamental geometrical concepts depend on three basic concepts — point, line and plane. The terms cannot be precisely defined. However, the meanings of these terms are explained through examples.

    Read More