Subscribe to our YouTube channel for the latest videos, updates, and tips.


Sines and Cosines of Multiples or Submultiples

We will learn how to solve identities involving sines and cosines of multiples or submultiples of the angles involved.

We use the following ways to solve the identities involving sines and cosines.

(i) Take the first two terms of L.H.S. and express the sum of two sines (or cosines) as product. 

(ii) In the third term of L.H.S. apply the formula of sin 2A (or cos 2A).

(iii) Then use the condition A + B + C = π and take one sine (or cosine) term common. 

(iv) Finally, express the sum or difference of two sines (or cosines) in the brackets as product. 

1. If A + B + C= π   prove that, 

sin A + sin B - sin C = 4 sin \(\frac{A}{2}\) sin \(\frac{B}{2}\) cos \(\frac{C}{2}\)

Solution:

We have,

A + B + C = π

⇒ C = π - (A + B)

⇒ \(\frac{C}{2}\) = \(\frac{π }{2}\)  - (\(\frac{A + B}{2}\))

Therefore, sin (\(\frac{A + B}{2}\)) = sin (\(\frac{π }{2}\)  - \(\frac{C}{2}\)) = cos  \(\frac{C}{2}\)

Now, L.H.S. = sin A + sin B - sin C

= (sin A + sin B) - sin C

= 2 sin (\(\frac{A + B}{2}\)) cos (\(\frac{A - B}{2}\)) - sin C

= 2 sin (\(\frac{π - C}{2}\)) cos (\(\frac{A - B}{2}\)) - sin C

= 2 sin (\(\frac{π}{2}\) -  \(\frac{C}{2}\)) cos \(\frac{A - B}{2}\) - sin C

= 2 cos \(\frac{C}{2}\) cos \(\frac{A - B}{2}\) - sin C

= 2 cos \(\frac{C}{2}\) cos \(\frac{A - B}{2}\) - 2 sin \(\frac{C}{2}\) cos \(\frac{C}{2}\)

= 2 cos \(\frac{C}{2}\)[cos \(\frac{A - B}{2}\) - sin \(\frac{C}{2}\)]

= 2 cos \(\frac{C}{2}\)[cos \(\frac{A - B}{2}\) - sin (\(\frac{π}{2}\) -  \(\frac{A + B}{2}\))]

= 2 cos \(\frac{C}{2}\)[cos (\(\frac{A - B}{2}\)) - cos (\(\frac{A + B}{2}\))]

= 2 cos \(\frac{C}{2}\)[cos  (\(\frac{A}{2}\) -  \(\frac{B}{2}\)) - cos  (\(\frac{A}{2}\) + \(\frac{B}{2}\))]

= 2 cos \(\frac{C}{2}\) [(cos \(\frac{A}{2}\)  cos \(\frac{B}{2}\) +  sin \(\frac{A}{2}\)  sin \(\frac{B}{2}\)) - (cos \(\frac{A}{2}\)  cos \(\frac{B}{2}\) +  sin \(\frac{A}{2}\)  sin \(\frac{B}{2}\))]

= 2 cos \(\frac{C}{2}\)[2 sin \(\frac{A}{2}\)   sin \(\frac{B}{2}\)]

= 4 sin \(\frac{A}{2}\)  sin \(\frac{B}{2}\) cos \(\frac{C}{2}\)  = R.H.S.                    Proved.

2. If A, B, C be the angles of a triangle, prove that, 

cos A + cos B + cos C = 1 + 4 sin \(\frac{A}{2}\) sin \(\frac{B}{2}\) sin \(\frac{C}{2}\)

Solution:

Since A, B, C are the angles of a triangle,

Therefore, A + B + C = π

⇒ C = π - (A + B)

⇒ \(\frac{C}{2}\) = \(\frac{π }{2}\)  - (\(\frac{A + B}{2}\))

Thus, cos (\(\frac{A + B}{2}\)) = cos (\(\frac{π }{2}\)  - \(\frac{C}{2}\)) = sin \(\frac{C}{2}\)

Now, L. H. S. = cos A + cos B + cos C

= (cos A + cos B) + cos C  

= 2 cos (\(\frac{A + B}{2}\))  cos (\(\frac{A - B}{2}\))  + cos C

= 2 cos (\(\frac{π}{2}\) - \(\frac{C}{2}\)) cos (\(\frac{A - B}{2}\))  + cos C

= 2 sin \(\frac{C}{2}\) cos (\(\frac{A - B}{2}\)) + 1 - 2 sin\(^{2}\) \(\frac{C}{2}\)

= 2 sin \(\frac{C}{2}\) cos (\(\frac{A - B}{2}\)) - 2 sin\(^{2}\) \(\frac{C}{2}\) + 1

= 2 sin \(\frac{C}{2}\)[cos (\(\frac{A - B}{2}\))  - sin \(\frac{C}{2}\)] + 1

= 2 sin \(\frac{C}{2}\)[cos (\(\frac{A - B}{2}\))  - sin (\(\frac{π}{2}\) -  \(\frac{A + B}{2}\))] + 1

= 2 sin \(\frac{C}{2}\)[cos (\(\frac{A - B}{2}\))  - cos (\(\frac{A + B}{2}\))] + 1

= 2 sin \(\frac{C}{2}\) [2 sin \(\frac{A}{2}\) sin \(\frac{B}{2}\)] + 1

= 4 sin \(\frac{C}{2}\) sin \(\frac{A}{2}\) sin \(\frac{B}{2}\) + 1

= 1 + 4 sin \(\frac{A}{2}\) sin \(\frac{B}{2}\) sin \(\frac{C}{2}\)                    Proved.


3. If A +  B + C = π prove that, 
sin \(\frac{A}{2}\) +sin \(\frac{B}{2}\) + sin \(\frac{C}{2}\)  = 1 + 4 sin \(\frac{π - A}{4}\)  sin \(\frac{π - B}{4}\)  sin \(\frac{π - C}{4}\)  

Solution:

A + B + C = π          

⇒ \(\frac{C}{2}\) = \(\frac{π}{2}\) - \(\frac{A + B}{2}\)

Therefore, sin \(\frac{C}{2}\) = sin (\(\frac{π }{2}\)  - \(\frac{A + B}{2}\))  = cos \(\frac{A + B}{2}\)

Now, L. H. S. = sin \(\frac{A}{2}\) +sin \(\frac{B}{2}\) + sin \(\frac{C}{2}\)

= 2 sin \(\frac{A + B}{4}\) cos \(\frac{A - B}{4}\) + cos (\(\frac{π}{2}\) - \(\frac{C}{2}\))

= 2 sin \(\frac{π - C}{4}\) cos \(\frac{A - B}{4}\) + cos \(\frac{π - C}{2}\)

= 2 sin \(\frac{π - C}{4}\) cos \(\frac{A - B}{4}\) + 1 – 2 sin\(^{2}\) \(\frac{π - C}{4}\)

= 2 sin \(\frac{π - C}{4}\)  cos \(\frac{A - B}{4}\) - 2 sin\(^{2}\) \(\frac{π - C}{4}\) + 1

= 2 sin \(\frac{π - C}{4}\) [cos \(\frac{A - B}{4}\)  - sin \(\frac{π - C}{4}\)] + 1

= 2 sin \(\frac{π - C}{4}\) [cos \(\frac{A - B}{4}\)  - cos {\(\frac{π}{2}\)  - \(\frac{π - C}{4}\)}] + 1

= 2 sin \(\frac{π - C}{4}\) [cos \(\frac{A - B}{4}\) - cos (\(\frac{π}{4}\) + \(\frac{C}{4}\))] + 1

= 2 sin \(\frac{π - C}{4}\) [cos \(\frac{A - B}{4}\) - cos \(\frac{π + C}{4}\)] + 1

= 2 sin \(\frac{π - C}{4}\) [2 sin \(\frac{A - B + π + C}{8}\)  sin \(\frac{π + C - A + B}{8}\)] + 1

= 2 sin \(\frac{π - C}{4}\) [2 sin \(\frac{A + C + π - B}{8}\) sin \(\frac{B + C + π - A}{8}\)] + 1

= 2 sin \(\frac{π - C}{4}\) [2 sin \(\frac{π - B + π - B}{8}\) sin \(\frac{π - A + π - A}{8}\)] + 1

= 2 sin \(\frac{π - C}{4}\) [2 sin \(\frac{π - B}{4}\)  sin \(\frac{π - A}{4}\)] + 1

= 4 sin \(\frac{π - C}{4}\) sin \(\frac{π - B}{4}\)  sin \(\frac{π - A}{4}\)  + 1

= 1 + 4 sin \(\frac{π - A}{4}\)  sin \(\frac{π - B}{4}\)  sin \(\frac{π - C}{4}\)                    Proved.

 

 

4. If A + B + C = π show that, 
cos \(\frac{A}{2}\) + cos \(\frac{B}{2}\) + cos \(\frac{C}{2}\) =  4 cos \(\frac{A + B}{4}\) cos \(\frac{B + C}{4}\) cos \(\frac{C + A}{4}\)

Solution:

A + B + C = π   

\(\frac{C}{2}\) = \(\frac{π}{2}\) - \(\frac{A + B}{2}\)
Therefore, cos \(\frac{C}{2}\) = cos (\(\frac{π}{2}\) - \(\frac{A + B}{2}\)) = sin \(\frac{A + B}{2}\)

Now, L. H. S. = cos \(\frac{A}{2}\) + cos \(\frac{B}{2}\) + cos \(\frac{C}{2}\)

= (cos \(\frac{A}{2}\) + cos \(\frac{B}{2}\)) + cos \(\frac{C}{2}\)

= 2 cos \(\frac{A + B}{4}\)  cos \(\frac{A - B}{4}\) +  sin \(\frac{A + B}{2}\)  [Since, cos \(\frac{C}{2}\)  = sin \(\frac{A + B}{2}\)] 

= 2 cos \(\frac{A + B}{4}\) cos \(\frac{A - B}{4}\) + 2 sin \(\frac{A + B}{4}\) cos \(\frac{A + B}{4}\)

= 2 cos  \(\frac{A + B}{4}\)[cos \(\frac{A - B}{4}\) + sin \(\frac{A + B}{4}\)]

= 2 cos \(\frac{A + B}{4}\) [cos \(\frac{A + B}{4}\) + cos (\(\frac{π}{2}\) - \(\frac{A + B}{4}\))] 

= 2 cos \(\frac{A + B}{4}\) [2 cos \(\frac{\frac{A - B}{4} + \frac{π}{2} - \frac{A + B}{4}}{2}\) cos  \(\frac{\frac{π}{2} - \frac{A + B}{4} - \frac{A - B}{4}}{2}\)]

= 2 cos \(\frac{A + B}{4}\) [2 cos \(\frac{π - B}{4}\) cos \(\frac{π - A}{4}\)]

= 4 cos \(\frac{A + B}{4}\) cos \(\frac{C + A}{4}\)  cos \(\frac{B + C}{4}\), [Since, π - B = A + B + C - B = A + C; Similarly, π - A = B + C] 

= 4 cos \(\frac{A + B}{4}\) cos \(\frac{B + C}{4}\) cos \(\frac{C + A}{4}\).                     Proved.

 Conditional Trigonometric Identities





11 and 12 Grade Math

From Sines and Cosines of Multiples or Submultiples to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Conversion of Temperature | Temperature Worksheets | Ans

    Jun 24, 25 02:20 AM

    Worksheet on Conversion of Temperature
    We will practice the questions given in the worksheet on conversion of temperature from one scale into another. We know the two different temperature scales are the Fahrenheit scale and the

    Read More

  2. Worksheet on Temperature |Celsius to Fahrenheit, Fahrenheit to Celsius

    Jun 24, 25 01:58 AM

    Worksheet on Temperature
    In the worksheet on temperature we will solve 10 different types of questions.1. Which is colder 32°F or 0°C? 2. Water boils at ...°C and freezes at ....°F.

    Read More

  3. 5th Grade Temperature | Fahrenheit Scale | Celsius Scale | Thermometer

    Jun 24, 25 12:28 AM

    Mercury Thermometer
    We will discuss here about the concept of temperature. We have already learned about various types of measurements like length, mass capacity and time. But if we have fever, non of these measurements

    Read More

  4. Converting the Temperature from Fahrenheit to Celsius | Examples

    Jun 20, 25 12:53 PM

    In converting the temperature from Fahrenheit to Celsius the formula is, C = (5/9)(F - 32); The steps of converting from Fahrenheit to Celsius are reversed here.

    Read More

  5. Converting the Temperature from Celsius to Fahrenheit | Examples

    Jun 20, 25 12:01 PM

    In converting the temperature from Celsius to Fahrenheit the formula is F = (9/5)C + 32. Steps of converting from Celsius (°C) to Fahrenheit (°F)

    Read More