Sines and Cosines of Multiples or Submultiples

We will learn how to solve identities involving sines and cosines of multiples or submultiples of the angles involved.

We use the following ways to solve the identities involving sines and cosines.

(i) Take the first two terms of L.H.S. and express the sum of two sines (or cosines) as product. 

(ii) In the third term of L.H.S. apply the formula of sin 2A (or cos 2A).

(iii) Then use the condition A + B + C = π and take one sine (or cosine) term common. 

(iv) Finally, express the sum or difference of two sines (or cosines) in the brackets as product. 

1. If A + B + C= π   prove that, 

sin A + sin B - sin C = 4 sin \(\frac{A}{2}\) sin \(\frac{B}{2}\) cos \(\frac{C}{2}\)

Solution:

We have,

A + B + C = π

⇒ C = π - (A + B)

⇒ \(\frac{C}{2}\) = \(\frac{π }{2}\)  - (\(\frac{A + B}{2}\))

Therefore, sin (\(\frac{A + B}{2}\)) = sin (\(\frac{π }{2}\)  - \(\frac{C}{2}\)) = cos  \(\frac{C}{2}\)

Now, L.H.S. = sin A + sin B - sin C

= (sin A + sin B) - sin C

= 2 sin (\(\frac{A + B}{2}\)) cos (\(\frac{A - B}{2}\)) - sin C

= 2 sin (\(\frac{π - C}{2}\)) cos (\(\frac{A - B}{2}\)) - sin C

= 2 sin (\(\frac{π}{2}\) -  \(\frac{C}{2}\)) cos \(\frac{A - B}{2}\) - sin C

= 2 cos \(\frac{C}{2}\) cos \(\frac{A - B}{2}\) - sin C

= 2 cos \(\frac{C}{2}\) cos \(\frac{A - B}{2}\) - 2 sin \(\frac{C}{2}\) cos \(\frac{C}{2}\)

= 2 cos \(\frac{C}{2}\)[cos \(\frac{A - B}{2}\) - sin \(\frac{C}{2}\)]

= 2 cos \(\frac{C}{2}\)[cos \(\frac{A - B}{2}\) - sin (\(\frac{π}{2}\) -  \(\frac{A + B}{2}\))]

= 2 cos \(\frac{C}{2}\)[cos (\(\frac{A - B}{2}\)) - cos (\(\frac{A + B}{2}\))]

= 2 cos \(\frac{C}{2}\)[cos  (\(\frac{A}{2}\) -  \(\frac{B}{2}\)) - cos  (\(\frac{A}{2}\) + \(\frac{B}{2}\))]

= 2 cos \(\frac{C}{2}\) [(cos \(\frac{A}{2}\)  cos \(\frac{B}{2}\) +  sin \(\frac{A}{2}\)  sin \(\frac{B}{2}\)) - (cos \(\frac{A}{2}\)  cos \(\frac{B}{2}\) +  sin \(\frac{A}{2}\)  sin \(\frac{B}{2}\))]

= 2 cos \(\frac{C}{2}\)[2 sin \(\frac{A}{2}\)   sin \(\frac{B}{2}\)]

= 4 sin \(\frac{A}{2}\)  sin \(\frac{B}{2}\) cos \(\frac{C}{2}\)  = R.H.S.                    Proved.

2. If A, B, C be the angles of a triangle, prove that, 

cos A + cos B + cos C = 1 + 4 sin \(\frac{A}{2}\) sin \(\frac{B}{2}\) sin \(\frac{C}{2}\)

Solution:

Since A, B, C are the angles of a triangle,

Therefore, A + B + C = π

⇒ C = π - (A + B)

⇒ \(\frac{C}{2}\) = \(\frac{π }{2}\)  - (\(\frac{A + B}{2}\))

Thus, cos (\(\frac{A + B}{2}\)) = cos (\(\frac{π }{2}\)  - \(\frac{C}{2}\)) = sin \(\frac{C}{2}\)

Now, L. H. S. = cos A + cos B + cos C

= (cos A + cos B) + cos C  

= 2 cos (\(\frac{A + B}{2}\))  cos (\(\frac{A - B}{2}\))  + cos C

= 2 cos (\(\frac{π}{2}\) - \(\frac{C}{2}\)) cos (\(\frac{A - B}{2}\))  + cos C

= 2 sin \(\frac{C}{2}\) cos (\(\frac{A - B}{2}\)) + 1 - 2 sin\(^{2}\) \(\frac{C}{2}\)

= 2 sin \(\frac{C}{2}\) cos (\(\frac{A - B}{2}\)) - 2 sin\(^{2}\) \(\frac{C}{2}\) + 1

= 2 sin \(\frac{C}{2}\)[cos (\(\frac{A - B}{2}\))  - sin \(\frac{C}{2}\)] + 1

= 2 sin \(\frac{C}{2}\)[cos (\(\frac{A - B}{2}\))  - sin (\(\frac{π}{2}\) -  \(\frac{A + B}{2}\))] + 1

= 2 sin \(\frac{C}{2}\)[cos (\(\frac{A - B}{2}\))  - cos (\(\frac{A + B}{2}\))] + 1

= 2 sin \(\frac{C}{2}\) [2 sin \(\frac{A}{2}\) sin \(\frac{B}{2}\)] + 1

= 4 sin \(\frac{C}{2}\) sin \(\frac{A}{2}\) sin \(\frac{B}{2}\) + 1

= 1 + 4 sin \(\frac{A}{2}\) sin \(\frac{B}{2}\) sin \(\frac{C}{2}\)                    Proved.


3. If A +  B + C = π prove that, 
sin \(\frac{A}{2}\) +sin \(\frac{B}{2}\) + sin \(\frac{C}{2}\)  = 1 + 4 sin \(\frac{π - A}{4}\)  sin \(\frac{π - B}{4}\)  sin \(\frac{π - C}{4}\)  

Solution:

A + B + C = π          

⇒ \(\frac{C}{2}\) = \(\frac{π}{2}\) - \(\frac{A + B}{2}\)

Therefore, sin \(\frac{C}{2}\) = sin (\(\frac{π }{2}\)  - \(\frac{A + B}{2}\))  = cos \(\frac{A + B}{2}\)

Now, L. H. S. = sin \(\frac{A}{2}\) +sin \(\frac{B}{2}\) + sin \(\frac{C}{2}\)

= 2 sin \(\frac{A + B}{4}\) cos \(\frac{A - B}{4}\) + cos (\(\frac{π}{2}\) - \(\frac{C}{2}\))

= 2 sin \(\frac{π - C}{4}\) cos \(\frac{A - B}{4}\) + cos \(\frac{π - C}{2}\)

= 2 sin \(\frac{π - C}{4}\) cos \(\frac{A - B}{4}\) + 1 – 2 sin\(^{2}\) \(\frac{π - C}{4}\)

= 2 sin \(\frac{π - C}{4}\)  cos \(\frac{A - B}{4}\) - 2 sin\(^{2}\) \(\frac{π - C}{4}\) + 1

= 2 sin \(\frac{π - C}{4}\) [cos \(\frac{A - B}{4}\)  - sin \(\frac{π - C}{4}\)] + 1

= 2 sin \(\frac{π - C}{4}\) [cos \(\frac{A - B}{4}\)  - cos {\(\frac{π}{2}\)  - \(\frac{π - C}{4}\)}] + 1

= 2 sin \(\frac{π - C}{4}\) [cos \(\frac{A - B}{4}\) - cos (\(\frac{π}{4}\) + \(\frac{C}{4}\))] + 1

= 2 sin \(\frac{π - C}{4}\) [cos \(\frac{A - B}{4}\) - cos \(\frac{π + C}{4}\)] + 1

= 2 sin \(\frac{π - C}{4}\) [2 sin \(\frac{A - B + π + C}{8}\)  sin \(\frac{π + C - A + B}{8}\)] + 1

= 2 sin \(\frac{π - C}{4}\) [2 sin \(\frac{A + C + π - B}{8}\) sin \(\frac{B + C + π - A}{8}\)] + 1

= 2 sin \(\frac{π - C}{4}\) [2 sin \(\frac{π - B + π - B}{8}\) sin \(\frac{π - A + π - A}{8}\)] + 1

= 2 sin \(\frac{π - C}{4}\) [2 sin \(\frac{π - B}{4}\)  sin \(\frac{π - A}{4}\)] + 1

= 4 sin \(\frac{π - C}{4}\) sin \(\frac{π - B}{4}\)  sin \(\frac{π - A}{4}\)  + 1

= 1 + 4 sin \(\frac{π - A}{4}\)  sin \(\frac{π - B}{4}\)  sin \(\frac{π - C}{4}\)                    Proved.

 

 

4. If A + B + C = π show that, 
cos \(\frac{A}{2}\) + cos \(\frac{B}{2}\) + cos \(\frac{C}{2}\) =  4 cos \(\frac{A + B}{4}\) cos \(\frac{B + C}{4}\) cos \(\frac{C + A}{4}\)

Solution:

A + B + C = π   

\(\frac{C}{2}\) = \(\frac{π}{2}\) - \(\frac{A + B}{2}\)
Therefore, cos \(\frac{C}{2}\) = cos (\(\frac{π}{2}\) - \(\frac{A + B}{2}\)) = sin \(\frac{A + B}{2}\)

Now, L. H. S. = cos \(\frac{A}{2}\) + cos \(\frac{B}{2}\) + cos \(\frac{C}{2}\)

= (cos \(\frac{A}{2}\) + cos \(\frac{B}{2}\)) + cos \(\frac{C}{2}\)

= 2 cos \(\frac{A + B}{4}\)  cos \(\frac{A - B}{4}\) +  sin \(\frac{A + B}{2}\)  [Since, cos \(\frac{C}{2}\)  = sin \(\frac{A + B}{2}\)] 

= 2 cos \(\frac{A + B}{4}\) cos \(\frac{A - B}{4}\) + 2 sin \(\frac{A + B}{4}\) cos \(\frac{A + B}{4}\)

= 2 cos  \(\frac{A + B}{4}\)[cos \(\frac{A - B}{4}\) + sin \(\frac{A + B}{4}\)]

= 2 cos \(\frac{A + B}{4}\) [cos \(\frac{A + B}{4}\) + cos (\(\frac{π}{2}\) - \(\frac{A + B}{4}\))] 

= 2 cos \(\frac{A + B}{4}\) [2 cos \(\frac{\frac{A - B}{4} + \frac{π}{2} - \frac{A + B}{4}}{2}\) cos  \(\frac{\frac{π}{2} - \frac{A + B}{4} - \frac{A - B}{4}}{2}\)]

= 2 cos \(\frac{A + B}{4}\) [2 cos \(\frac{π - B}{4}\) cos \(\frac{π - A}{4}\)]

= 4 cos \(\frac{A + B}{4}\) cos \(\frac{C + A}{4}\)  cos \(\frac{B + C}{4}\), [Since, π - B = A + B + C - B = A + C; Similarly, π - A = B + C] 

= 4 cos \(\frac{A + B}{4}\) cos \(\frac{B + C}{4}\) cos \(\frac{C + A}{4}\).                     Proved.

 Conditional Trigonometric Identities





11 and 12 Grade Math

From Sines and Cosines of Multiples or Submultiples to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Rupees and Paise | Paise Coins | Rupee Coins | Rupee Notes

    Dec 04, 23 02:14 PM

    Different types of Indian Coins
    Money consists of rupees and paise; we require money to purchase things. 100 paise make one rupee. List of paise and rupees in the shape of coins and notes:

    Read More

  2. Months of the Year | List of 12 Months of the Year |Jan, Feb, Mar, Apr

    Dec 04, 23 01:50 PM

    Months of the Year
    There are 12 months in a year. The months are January, February, march, April, May, June, July, August, September, October, November and December. The year begins with the January month. December is t…

    Read More

  3. The Story about Seasons | Spring | Summer | Autumn | Winter

    Dec 04, 23 01:49 PM

    The Four Seasons
    Kids let’s enjoy the story about seasons. Here we will discuss about the four seasons and the duration. Some months are too hot and some are too cold. The period of hot months is called the hot

    Read More