Sines and Cosines of Multiples or Submultiples

We will learn how to solve identities involving sines and cosines of multiples or submultiples of the angles involved.

We use the following ways to solve the identities involving sines and cosines.

(i) Take the first two terms of L.H.S. and express the sum of two sines (or cosines) as product. 

(ii) In the third term of L.H.S. apply the formula of sin 2A (or cos 2A).

(iii) Then use the condition A + B + C = π and take one sine (or cosine) term common. 

(iv) Finally, express the sum or difference of two sines (or cosines) in the brackets as product. 

1. If A + B + C= π   prove that, 

sin A + sin B - sin C = 4 sin \(\frac{A}{2}\) sin \(\frac{B}{2}\) cos \(\frac{C}{2}\)

Solution:

We have,

A + B + C = π

⇒ C = π - (A + B)

⇒ \(\frac{C}{2}\) = \(\frac{π }{2}\)  - (\(\frac{A + B}{2}\))

Therefore, sin (\(\frac{A + B}{2}\)) = sin (\(\frac{π }{2}\)  - \(\frac{C}{2}\)) = cos  \(\frac{C}{2}\)

Now, L.H.S. = sin A + sin B - sin C

= (sin A + sin B) - sin C

= 2 sin (\(\frac{A + B}{2}\)) cos (\(\frac{A - B}{2}\)) - sin C

= 2 sin (\(\frac{π - C}{2}\)) cos (\(\frac{A - B}{2}\)) - sin C

= 2 sin (\(\frac{π}{2}\) -  \(\frac{C}{2}\)) cos \(\frac{A - B}{2}\) - sin C

= 2 cos \(\frac{C}{2}\) cos \(\frac{A - B}{2}\) - sin C

= 2 cos \(\frac{C}{2}\) cos \(\frac{A - B}{2}\) - 2 sin \(\frac{C}{2}\) cos \(\frac{C}{2}\)

= 2 cos \(\frac{C}{2}\)[cos \(\frac{A - B}{2}\) - sin \(\frac{C}{2}\)]

= 2 cos \(\frac{C}{2}\)[cos \(\frac{A - B}{2}\) - sin (\(\frac{π}{2}\) -  \(\frac{A + B}{2}\))]

= 2 cos \(\frac{C}{2}\)[cos (\(\frac{A - B}{2}\)) - cos (\(\frac{A + B}{2}\))]

= 2 cos \(\frac{C}{2}\)[cos  (\(\frac{A}{2}\) -  \(\frac{B}{2}\)) - cos  (\(\frac{A}{2}\) + \(\frac{B}{2}\))]

= 2 cos \(\frac{C}{2}\) [(cos \(\frac{A}{2}\)  cos \(\frac{B}{2}\) +  sin \(\frac{A}{2}\)  sin \(\frac{B}{2}\)) - (cos \(\frac{A}{2}\)  cos \(\frac{B}{2}\) +  sin \(\frac{A}{2}\)  sin \(\frac{B}{2}\))]

= 2 cos \(\frac{C}{2}\)[2 sin \(\frac{A}{2}\)   sin \(\frac{B}{2}\)]

= 4 sin \(\frac{A}{2}\)  sin \(\frac{B}{2}\) cos \(\frac{C}{2}\)  = R.H.S.                    Proved.

2. If A, B, C be the angles of a triangle, prove that, 

cos A + cos B + cos C = 1 + 4 sin \(\frac{A}{2}\) sin \(\frac{B}{2}\) sin \(\frac{C}{2}\)

Solution:

Since A, B, C are the angles of a triangle,

Therefore, A + B + C = π

⇒ C = π - (A + B)

⇒ \(\frac{C}{2}\) = \(\frac{π }{2}\)  - (\(\frac{A + B}{2}\))

Thus, cos (\(\frac{A + B}{2}\)) = cos (\(\frac{π }{2}\)  - \(\frac{C}{2}\)) = sin \(\frac{C}{2}\)

Now, L. H. S. = cos A + cos B + cos C

= (cos A + cos B) + cos C  

= 2 cos (\(\frac{A + B}{2}\))  cos (\(\frac{A - B}{2}\))  + cos C

= 2 cos (\(\frac{π}{2}\) - \(\frac{C}{2}\)) cos (\(\frac{A - B}{2}\))  + cos C

= 2 sin \(\frac{C}{2}\) cos (\(\frac{A - B}{2}\)) + 1 - 2 sin\(^{2}\) \(\frac{C}{2}\)

= 2 sin \(\frac{C}{2}\) cos (\(\frac{A - B}{2}\)) - 2 sin\(^{2}\) \(\frac{C}{2}\) + 1

= 2 sin \(\frac{C}{2}\)[cos (\(\frac{A - B}{2}\))  - sin \(\frac{C}{2}\)] + 1

= 2 sin \(\frac{C}{2}\)[cos (\(\frac{A - B}{2}\))  - sin (\(\frac{π}{2}\) -  \(\frac{A + B}{2}\))] + 1

= 2 sin \(\frac{C}{2}\)[cos (\(\frac{A - B}{2}\))  - cos (\(\frac{A + B}{2}\))] + 1

= 2 sin \(\frac{C}{2}\) [2 sin \(\frac{A}{2}\) sin \(\frac{B}{2}\)] + 1

= 4 sin \(\frac{C}{2}\) sin \(\frac{A}{2}\) sin \(\frac{B}{2}\) + 1

= 1 + 4 sin \(\frac{A}{2}\) sin \(\frac{B}{2}\) sin \(\frac{C}{2}\)                    Proved.


3. If A +  B + C = π prove that, 
sin \(\frac{A}{2}\) +sin \(\frac{B}{2}\) + sin \(\frac{C}{2}\)  = 1 + 4 sin \(\frac{π - A}{4}\)  sin \(\frac{π - B}{4}\)  sin \(\frac{π - C}{4}\)  

Solution:

A + B + C = π          

⇒ \(\frac{C}{2}\) = \(\frac{π}{2}\) - \(\frac{A + B}{2}\)

Therefore, sin \(\frac{C}{2}\) = sin (\(\frac{π }{2}\)  - \(\frac{A + B}{2}\))  = cos \(\frac{A + B}{2}\)

Now, L. H. S. = sin \(\frac{A}{2}\) +sin \(\frac{B}{2}\) + sin \(\frac{C}{2}\)

= 2 sin \(\frac{A + B}{4}\) cos \(\frac{A - B}{4}\) + cos (\(\frac{π}{2}\) - \(\frac{C}{2}\))

= 2 sin \(\frac{π - C}{4}\) cos \(\frac{A - B}{4}\) + cos \(\frac{π - C}{2}\)

= 2 sin \(\frac{π - C}{4}\) cos \(\frac{A - B}{4}\) + 1 – 2 sin\(^{2}\) \(\frac{π - C}{4}\)

= 2 sin \(\frac{π - C}{4}\)  cos \(\frac{A - B}{4}\) - 2 sin\(^{2}\) \(\frac{π - C}{4}\) + 1

= 2 sin \(\frac{π - C}{4}\) [cos \(\frac{A - B}{4}\)  - sin \(\frac{π - C}{4}\)] + 1

= 2 sin \(\frac{π - C}{4}\) [cos \(\frac{A - B}{4}\)  - cos {\(\frac{π}{2}\)  - \(\frac{π - C}{4}\)}] + 1

= 2 sin \(\frac{π - C}{4}\) [cos \(\frac{A - B}{4}\) - cos (\(\frac{π}{4}\) + \(\frac{C}{4}\))] + 1

= 2 sin \(\frac{π - C}{4}\) [cos \(\frac{A - B}{4}\) - cos \(\frac{π + C}{4}\)] + 1

= 2 sin \(\frac{π - C}{4}\) [2 sin \(\frac{A - B + π + C}{8}\)  sin \(\frac{π + C - A + B}{8}\)] + 1

= 2 sin \(\frac{π - C}{4}\) [2 sin \(\frac{A + C + π - B}{8}\) sin \(\frac{B + C + π - A}{8}\)] + 1

= 2 sin \(\frac{π - C}{4}\) [2 sin \(\frac{π - B + π - B}{8}\) sin \(\frac{π - A + π - A}{8}\)] + 1

= 2 sin \(\frac{π - C}{4}\) [2 sin \(\frac{π - B}{4}\)  sin \(\frac{π - A}{4}\)] + 1

= 4 sin \(\frac{π - C}{4}\) sin \(\frac{π - B}{4}\)  sin \(\frac{π - A}{4}\)  + 1

= 1 + 4 sin \(\frac{π - A}{4}\)  sin \(\frac{π - B}{4}\)  sin \(\frac{π - C}{4}\)                    Proved.

 

 

4. If A + B + C = π show that, 
cos \(\frac{A}{2}\) + cos \(\frac{B}{2}\) + cos \(\frac{C}{2}\) =  4 cos \(\frac{A + B}{4}\) cos \(\frac{B + C}{4}\) cos \(\frac{C + A}{4}\)

Solution:

A + B + C = π   

\(\frac{C}{2}\) = \(\frac{π}{2}\) - \(\frac{A + B}{2}\)
Therefore, cos \(\frac{C}{2}\) = cos (\(\frac{π}{2}\) - \(\frac{A + B}{2}\)) = sin \(\frac{A + B}{2}\)

Now, L. H. S. = cos \(\frac{A}{2}\) + cos \(\frac{B}{2}\) + cos \(\frac{C}{2}\)

= (cos \(\frac{A}{2}\) + cos \(\frac{B}{2}\)) + cos \(\frac{C}{2}\)

= 2 cos \(\frac{A + B}{4}\)  cos \(\frac{A - B}{4}\) +  sin \(\frac{A + B}{2}\)  [Since, cos \(\frac{C}{2}\)  = sin \(\frac{A + B}{2}\)] 

= 2 cos \(\frac{A + B}{4}\) cos \(\frac{A - B}{4}\) + 2 sin \(\frac{A + B}{4}\) cos \(\frac{A + B}{4}\)

= 2 cos  \(\frac{A + B}{4}\)[cos \(\frac{A - B}{4}\) + sin \(\frac{A + B}{4}\)]

= 2 cos \(\frac{A + B}{4}\) [cos \(\frac{A + B}{4}\) + cos (\(\frac{π}{2}\) - \(\frac{A + B}{4}\))] 

= 2 cos \(\frac{A + B}{4}\) [2 cos \(\frac{\frac{A - B}{4} + \frac{π}{2} - \frac{A + B}{4}}{2}\) cos  \(\frac{\frac{π}{2} - \frac{A + B}{4} - \frac{A - B}{4}}{2}\)]

= 2 cos \(\frac{A + B}{4}\) [2 cos \(\frac{π - B}{4}\) cos \(\frac{π - A}{4}\)]

= 4 cos \(\frac{A + B}{4}\) cos \(\frac{C + A}{4}\)  cos \(\frac{B + C}{4}\), [Since, π - B = A + B + C - B = A + C; Similarly, π - A = B + C] 

= 4 cos \(\frac{A + B}{4}\) cos \(\frac{B + C}{4}\) cos \(\frac{C + A}{4}\).                     Proved.

 Conditional Trigonometric Identities





11 and 12 Grade Math

From Sines and Cosines of Multiples or Submultiples to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. BODMAS Rule | Order of Operation | Definition, Examples, Problems

    Mar 27, 25 03:02 AM

    Easy and simple way to remember BODMAS rule!! B → Brackets first (parentheses) O → Of (orders i.e. Powers and Square Roots, Cube Roots, etc.) DM → Division and Multiplication

    Read More

  2. 5th Grade Math Worksheets | 5th Grade Homework Sheets | Math Worksheet

    Mar 27, 25 02:46 AM

    5th grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students. Teachers and parents can also follow the worksheets to guide the students.

    Read More

  3. 5th Grade Relation Between HCF and LCM | Solved Examples | Worksheet

    Mar 27, 25 02:34 AM

    Here we will discuss about the relationship between hcf and lcm of two numbers. Product of two numbers = Product of H.C.F. and L.C.M. of the numbers. Solved Examples on 5th Grade Relation Between HCF…

    Read More

  4. 5th Grade Word Problems on H.C.F. and L.C.M. | Worksheet with Answers

    Mar 27, 25 02:33 AM

    L.C.M. of 8, 24 and 32 by Long Division Method
    Here we will solve different types of word Problems on H.C.F. and L.C.M. Find the smallest number which when divided by 8, 24 and 32 when leaves 7 as remainder in each. 1. Find the lowest number which…

    Read More

  5. Divisible by 3 | Test of Divisibility by 3 |Rules of Divisibility by 3

    Mar 26, 25 11:08 AM

    Divisible by 3
    A number is divisible by 3, if the sum of its all digits is a multiple of 3 or divisibility by 3. Consider the following numbers to find whether the numbers are divisible or not divisible by 3: (i) 54…

    Read More