Sines and Cosines of Multiples or Submultiples

We will learn how to solve identities involving sines and cosines of multiples or submultiples of the angles involved.

We use the following ways to solve the identities involving sines and cosines.

(i) Take the first two terms of L.H.S. and express the sum of two sines (or cosines) as product. 

(ii) In the third term of L.H.S. apply the formula of sin 2A (or cos 2A).

(iii) Then use the condition A + B + C = π and take one sine (or cosine) term common. 

(iv) Finally, express the sum or difference of two sines (or cosines) in the brackets as product. 

1. If A + B + C= π   prove that, 

sin A + sin B - sin C = 4 sin \(\frac{A}{2}\) sin \(\frac{B}{2}\) cos \(\frac{C}{2}\)

Solution:

We have,

A + B + C = π

⇒ C = π - (A + B)

⇒ \(\frac{C}{2}\) = \(\frac{π }{2}\)  - (\(\frac{A + B}{2}\))

Therefore, sin (\(\frac{A + B}{2}\)) = sin (\(\frac{π }{2}\)  - \(\frac{C}{2}\)) = cos  \(\frac{C}{2}\)

Now, L.H.S. = sin A + sin B - sin C

= (sin A + sin B) - sin C

= 2 sin (\(\frac{A + B}{2}\)) cos (\(\frac{A - B}{2}\)) - sin C

= 2 sin (\(\frac{π - C}{2}\)) cos (\(\frac{A - B}{2}\)) - sin C

= 2 sin (\(\frac{π}{2}\) -  \(\frac{C}{2}\)) cos \(\frac{A - B}{2}\) - sin C

= 2 cos \(\frac{C}{2}\) cos \(\frac{A - B}{2}\) - sin C

= 2 cos \(\frac{C}{2}\) cos \(\frac{A - B}{2}\) - 2 sin \(\frac{C}{2}\) cos \(\frac{C}{2}\)

= 2 cos \(\frac{C}{2}\)[cos \(\frac{A - B}{2}\) - sin \(\frac{C}{2}\)]

= 2 cos \(\frac{C}{2}\)[cos \(\frac{A - B}{2}\) - sin (\(\frac{π}{2}\) -  \(\frac{A + B}{2}\))]

= 2 cos \(\frac{C}{2}\)[cos (\(\frac{A - B}{2}\)) - cos (\(\frac{A + B}{2}\))]

= 2 cos \(\frac{C}{2}\)[cos  (\(\frac{A}{2}\) -  \(\frac{B}{2}\)) - cos  (\(\frac{A}{2}\) + \(\frac{B}{2}\))]

= 2 cos \(\frac{C}{2}\) [(cos \(\frac{A}{2}\)  cos \(\frac{B}{2}\) +  sin \(\frac{A}{2}\)  sin \(\frac{B}{2}\)) - (cos \(\frac{A}{2}\)  cos \(\frac{B}{2}\) +  sin \(\frac{A}{2}\)  sin \(\frac{B}{2}\))]

= 2 cos \(\frac{C}{2}\)[2 sin \(\frac{A}{2}\)   sin \(\frac{B}{2}\)]

= 4 sin \(\frac{A}{2}\)  sin \(\frac{B}{2}\) cos \(\frac{C}{2}\)  = R.H.S.                    Proved.

2. If A, B, C be the angles of a triangle, prove that, 

cos A + cos B + cos C = 1 + 4 sin \(\frac{A}{2}\) sin \(\frac{B}{2}\) sin \(\frac{C}{2}\)

Solution:

Since A, B, C are the angles of a triangle,

Therefore, A + B + C = π

⇒ C = π - (A + B)

⇒ \(\frac{C}{2}\) = \(\frac{π }{2}\)  - (\(\frac{A + B}{2}\))

Thus, cos (\(\frac{A + B}{2}\)) = cos (\(\frac{π }{2}\)  - \(\frac{C}{2}\)) = sin \(\frac{C}{2}\)

Now, L. H. S. = cos A + cos B + cos C

= (cos A + cos B) + cos C  

= 2 cos (\(\frac{A + B}{2}\))  cos (\(\frac{A - B}{2}\))  + cos C

= 2 cos (\(\frac{π}{2}\) - \(\frac{C}{2}\)) cos (\(\frac{A - B}{2}\))  + cos C

= 2 sin \(\frac{C}{2}\) cos (\(\frac{A - B}{2}\)) + 1 - 2 sin\(^{2}\) \(\frac{C}{2}\)

= 2 sin \(\frac{C}{2}\) cos (\(\frac{A - B}{2}\)) - 2 sin\(^{2}\) \(\frac{C}{2}\) + 1

= 2 sin \(\frac{C}{2}\)[cos (\(\frac{A - B}{2}\))  - sin \(\frac{C}{2}\)] + 1

= 2 sin \(\frac{C}{2}\)[cos (\(\frac{A - B}{2}\))  - sin (\(\frac{π}{2}\) -  \(\frac{A + B}{2}\))] + 1

= 2 sin \(\frac{C}{2}\)[cos (\(\frac{A - B}{2}\))  - cos (\(\frac{A + B}{2}\))] + 1

= 2 sin \(\frac{C}{2}\) [2 sin \(\frac{A}{2}\) sin \(\frac{B}{2}\)] + 1

= 4 sin \(\frac{C}{2}\) sin \(\frac{A}{2}\) sin \(\frac{B}{2}\) + 1

= 1 + 4 sin \(\frac{A}{2}\) sin \(\frac{B}{2}\) sin \(\frac{C}{2}\)                    Proved.


3. If A +  B + C = π prove that, 
sin \(\frac{A}{2}\) +sin \(\frac{B}{2}\) + sin \(\frac{C}{2}\)  = 1 + 4 sin \(\frac{π - A}{4}\)  sin \(\frac{π - B}{4}\)  sin \(\frac{π - C}{4}\)  

Solution:

A + B + C = π          

⇒ \(\frac{C}{2}\) = \(\frac{π}{2}\) - \(\frac{A + B}{2}\)

Therefore, sin \(\frac{C}{2}\) = sin (\(\frac{π }{2}\)  - \(\frac{A + B}{2}\))  = cos \(\frac{A + B}{2}\)

Now, L. H. S. = sin \(\frac{A}{2}\) +sin \(\frac{B}{2}\) + sin \(\frac{C}{2}\)

= 2 sin \(\frac{A + B}{4}\) cos \(\frac{A - B}{4}\) + cos (\(\frac{π}{2}\) - \(\frac{C}{2}\))

= 2 sin \(\frac{π - C}{4}\) cos \(\frac{A - B}{4}\) + cos \(\frac{π - C}{2}\)

= 2 sin \(\frac{π - C}{4}\) cos \(\frac{A - B}{4}\) + 1 – 2 sin\(^{2}\) \(\frac{π - C}{4}\)

= 2 sin \(\frac{π - C}{4}\)  cos \(\frac{A - B}{4}\) - 2 sin\(^{2}\) \(\frac{π - C}{4}\) + 1

= 2 sin \(\frac{π - C}{4}\) [cos \(\frac{A - B}{4}\)  - sin \(\frac{π - C}{4}\)] + 1

= 2 sin \(\frac{π - C}{4}\) [cos \(\frac{A - B}{4}\)  - cos {\(\frac{π}{2}\)  - \(\frac{π - C}{4}\)}] + 1

= 2 sin \(\frac{π - C}{4}\) [cos \(\frac{A - B}{4}\) - cos (\(\frac{π}{4}\) + \(\frac{C}{4}\))] + 1

= 2 sin \(\frac{π - C}{4}\) [cos \(\frac{A - B}{4}\) - cos \(\frac{π + C}{4}\)] + 1

= 2 sin \(\frac{π - C}{4}\) [2 sin \(\frac{A - B + π + C}{8}\)  sin \(\frac{π + C - A + B}{8}\)] + 1

= 2 sin \(\frac{π - C}{4}\) [2 sin \(\frac{A + C + π - B}{8}\) sin \(\frac{B + C + π - A}{8}\)] + 1

= 2 sin \(\frac{π - C}{4}\) [2 sin \(\frac{π - B + π - B}{8}\) sin \(\frac{π - A + π - A}{8}\)] + 1

= 2 sin \(\frac{π - C}{4}\) [2 sin \(\frac{π - B}{4}\)  sin \(\frac{π - A}{4}\)] + 1

= 4 sin \(\frac{π - C}{4}\) sin \(\frac{π - B}{4}\)  sin \(\frac{π - A}{4}\)  + 1

= 1 + 4 sin \(\frac{π - A}{4}\)  sin \(\frac{π - B}{4}\)  sin \(\frac{π - C}{4}\)                    Proved.

 

 

4. If A + B + C = π show that, 
cos \(\frac{A}{2}\) + cos \(\frac{B}{2}\) + cos \(\frac{C}{2}\) =  4 cos \(\frac{A + B}{4}\) cos \(\frac{B + C}{4}\) cos \(\frac{C + A}{4}\)

Solution:

A + B + C = π   

\(\frac{C}{2}\) = \(\frac{π}{2}\) - \(\frac{A + B}{2}\)
Therefore, cos \(\frac{C}{2}\) = cos (\(\frac{π}{2}\) - \(\frac{A + B}{2}\)) = sin \(\frac{A + B}{2}\)

Now, L. H. S. = cos \(\frac{A}{2}\) + cos \(\frac{B}{2}\) + cos \(\frac{C}{2}\)

= (cos \(\frac{A}{2}\) + cos \(\frac{B}{2}\)) + cos \(\frac{C}{2}\)

= 2 cos \(\frac{A + B}{4}\)  cos \(\frac{A - B}{4}\) +  sin \(\frac{A + B}{2}\)  [Since, cos \(\frac{C}{2}\)  = sin \(\frac{A + B}{2}\)] 

= 2 cos \(\frac{A + B}{4}\) cos \(\frac{A - B}{4}\) + 2 sin \(\frac{A + B}{4}\) cos \(\frac{A + B}{4}\)

= 2 cos  \(\frac{A + B}{4}\)[cos \(\frac{A - B}{4}\) + sin \(\frac{A + B}{4}\)]

= 2 cos \(\frac{A + B}{4}\) [cos \(\frac{A + B}{4}\) + cos (\(\frac{π}{2}\) - \(\frac{A + B}{4}\))] 

= 2 cos \(\frac{A + B}{4}\) [2 cos \(\frac{\frac{A - B}{4} + \frac{π}{2} - \frac{A + B}{4}}{2}\) cos  \(\frac{\frac{π}{2} - \frac{A + B}{4} - \frac{A - B}{4}}{2}\)]

= 2 cos \(\frac{A + B}{4}\) [2 cos \(\frac{π - B}{4}\) cos \(\frac{π - A}{4}\)]

= 4 cos \(\frac{A + B}{4}\) cos \(\frac{C + A}{4}\)  cos \(\frac{B + C}{4}\), [Since, π - B = A + B + C - B = A + C; Similarly, π - A = B + C] 

= 4 cos \(\frac{A + B}{4}\) cos \(\frac{B + C}{4}\) cos \(\frac{C + A}{4}\).                     Proved.

 Conditional Trigonometric Identities





11 and 12 Grade Math

From Sines and Cosines of Multiples or Submultiples to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Math Only Math | Learn Math Step-by-Step | Worksheet | Videos | Games

    Apr 27, 24 02:23 PM

    Presenting math-only-math to kids, students and children. Mathematical ideas have been explained in the simplest possible way. Here you will have plenty of math help and lots of fun while learning.

    Read More

  2. Area | Units to find Area | Conversion Table of Area | Two Dimensional

    Apr 27, 24 01:53 PM

    Concept of Area
    The amount of surface that a plane figure covers is called its area. It’s unit is square centimeters or square meters etc. A rectangle, a square, a triangle and a circle are all examples of closed pla…

    Read More

  3. Worksheet on Use of Decimal | Free Printable Decimals Worksheets

    Apr 27, 24 01:45 PM

    Practice the questions given in the worksheet on use of decimals in calculating money, in measuring the length, in measuring the distance, in measuring the mass and in measuring the capacity.

    Read More

  4. Adding 1-Digit Number | Understand the Concept one Digit Number

    Apr 26, 24 01:55 PM

    Add by Counting Forward
    Understand the concept of adding 1-digit number with the help of objects as well as numbers.

    Read More

  5. Subtracting 2-Digit Numbers | How to Subtract Two Digit Numbers?

    Apr 26, 24 12:36 PM

    Subtracting 2-Digit Numbers
    In subtracting 2-digit numbers we will subtract or minus a two-digit number from another two-digit number. To find the difference between the two numbers we need to ‘ones from ones’ and ‘tens from

    Read More