Identities Involving Squares of Sines and Cosines

Identities involving squares of sines and cosines of multiples or submultiples of the angles involved.

To prove the identities involving squares sines and cosines we use the following algorithm.

Step I: Arrange the terms on the on the L.H.S. of the identity so that either sin\(^{2}\) A - sin\(^{2}\)  B = sin (A + B) sin (A - B) or cos\(^{2}\) A - sin\(^{2}\)  B = cos (A + B) cos (A - B) can be used.

Step II: Take the common factor outside.

Step III: Express the trigonometric ratio of a single angle inside the brackets into that of the sum of the angles.

Step IV: Use the formulas to convert the sum into product.

Examples on Identities involving squares of sines and cosines:

1.  If A + B + C = Ο€, prove that,

sin\(^{2}\) A + sin\(^{2}\) B + sin\(^{2}\) C = 2 + 2 cos A cos B cos C.

Solution:

L.H.S. = sin\(^{2}\) A + sin\(^{2}\) B + sin\(^{2}\) C

= \(\frac{1}{2}\)(1 - cos\(^{2}\) A) + \(\frac{1}{2}\)( 1- cos\(^{2}\) B) + 1- cos\(^{2}\) C

[Since, 2 sin\(^{2}\) A = 1 - cos 2A

β‡’ sin\(^{2}\) A = \(\frac{1}{2}\)(1 - cos 2A)

Similarly, sin\(^{2}\) B = \(\frac{1}{2}\)(1 - cos 2B) ]

= 2 - \(\frac{1}{2}\)(cos 2A + cos 2B) - cos\(^{2}\) C

= 2 - \(\frac{1}{2}\) βˆ™ 2 cos (A + B) cos (A - B) - cos\(^{2}\) C

= 2 + cos C cos (A - B) - cos\(^{2}\) C, [Since, A + B + C = Ο€ β‡’ A + B = Ο€ - C.

Therefore, cos (A + B) = cos (Ο€ - C) = - cos C]

= 2 + cos C [cos (A - B) - cosC]

= 2 + cos C [cos (A - B) + cos (A + B)], [Since, cos C = cos (A + B)]

= 2 + cos C [2 cos A cos B]

= 2 + 2 cos A cos B cos C = R.H.S.                     Proved.

 

2. If A + B + C = \(\frac{Ο€}{2}\)  prove that,

cos\(^{2}\) A+ cos\(^{2}\) B + cos\(^{2}\) C = 2 + 2sin A  sin B sin C.

Solution:

L.H.S. = cos\(^{2}\) A+ cos\(^{2}\) B + cos\(^{2}\) C

= \(\frac{1}{2}\)(1+ cos 2A) + \(\frac{1}{2}\)(1 + cos 2B)+ cos\(^{2}\) C [Since, 2 cos\(^{2}\) A = 1 + cos 2A

β‡’ cos\(^{2}\)A = \(\frac{1}{2}\)(1 + cos2A)

 Similarly, cos\(^{2}\)B =\(\frac{1}{2}\)(1 + cos 2B)]

= 1 + \(\frac{1}{2}\)(cos 2A + cos 2B) + cos\(^{2}\) C

= 1+ \(\frac{1}{2}\) βˆ™ [2 cos (A + B) cos (A - B)] + 1- sin\(^{2}\) C

= 2 + sin C cos (A - B) - sin\(^{2}\) C

[A + B + C = \(\frac{Ο€}{2}\)

β‡’ A + B = \(\frac{Ο€}{2}\)  - C   

Therefore, cos (A + B) = cos (\(\frac{Ο€}{2}\) - C)=  sin C]

= 2 + sin C [cos (A - B) - sin C]

= 2 + sin C [cos (A - B) - cos (A + B)], [Since, sin C = cos (A + B)]

= 2 + sin C [2 sin A sin B]

= 2 + 2 sin A sin B sin C = R.H.S.                   Proved.

● Conditional Trigonometric Identities






11 and 12 Grade Math

From Identities Involving Squares of Sines and Cosines to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Formation of Square and Rectangle | Construction of Square & Rectangle

    Jul 16, 25 02:45 AM

    Construction of a Square
    In formation of square and rectangle we will learn how to construct square and rectangle. Construction of a Square: We follow the method given below. Step I: We draw a line segment AB of the required…

    Read More

  2. Perimeter of a Figure | Perimeter of a Simple Closed Figure | Examples

    Jul 16, 25 02:33 AM

    Perimeter of a Figure
    Perimeter of a figure is explained here. Perimeter is the total length of the boundary of a closed figure. The perimeter of a simple closed figure is the sum of the measures of line-segments which hav…

    Read More

  3. Formation of Numbers | Smallest and Greatest Number| Number Formation

    Jul 15, 25 11:46 AM

    In formation of numbers we will learn the numbers having different numbers of digits. We know that: (i) Greatest number of one digit = 9,

    Read More

  4. 5th Grade Quadrilaterals | Square | Rectangle | Parallelogram |Rhombus

    Jul 15, 25 02:01 AM

    Square
    Quadrilaterals are known as four sided polygon.What is a quadrilateral? A closed figure made of our line segments is called a quadrilateral. For example:

    Read More

  5. 5th Grade Geometry Practice Test | Angle | Triangle | Circle |Free Ans

    Jul 14, 25 01:53 AM

    Name the Angles
    In 5th grade geometry practice test you will get different types of practice questions on lines, types of angle, triangles, properties of triangles, classification of triangles, construction of triang…

    Read More