Identities Involving Squares of Sines and Cosines

Identities involving squares of sines and cosines of multiples or submultiples of the angles involved.

To prove the identities involving squares sines and cosines we use the following algorithm.

Step I: Arrange the terms on the on the L.H.S. of the identity so that either sin$$^{2}$$ A - sin$$^{2}$$  B = sin (A + B) sin (A - B) or cos$$^{2}$$ A - sin$$^{2}$$  B = cos (A + B) cos (A - B) can be used.

Step II: Take the common factor outside.

Step III: Express the trigonometric ratio of a single angle inside the brackets into that of the sum of the angles.

Step IV: Use the formulas to convert the sum into product.

Examples on Identities involving squares of sines and cosines:

1.  If A + B + C = π, prove that,

sin$$^{2}$$ A + sin$$^{2}$$ B + sin$$^{2}$$ C = 2 + 2 cos A cos B cos C.

Solution:

L.H.S. = sin$$^{2}$$ A + sin$$^{2}$$ B + sin$$^{2}$$ C

= $$\frac{1}{2}$$(1 - cos$$^{2}$$ A) + $$\frac{1}{2}$$( 1- cos$$^{2}$$ B) + 1- cos$$^{2}$$ C

[Since, 2 sin$$^{2}$$ A = 1 - cos 2A

⇒ sin$$^{2}$$ A = $$\frac{1}{2}$$(1 - cos 2A)

Similarly, sin$$^{2}$$ B = $$\frac{1}{2}$$(1 - cos 2B) ]

= 2 - $$\frac{1}{2}$$(cos 2A + cos 2B) - cos$$^{2}$$ C

= 2 - $$\frac{1}{2}$$ ∙ 2 cos (A + B) cos (A - B) - cos$$^{2}$$ C

= 2 + cos C cos (A - B) - cos$$^{2}$$ C, [Since, A + B + C = π ⇒ A + B = π - C.

Therefore, cos (A + B) = cos (π - C) = - cos C]

= 2 + cos C [cos (A - B) - cosC]

= 2 + cos C [cos (A - B) + cos (A + B)], [Since, cos C = cos (A + B)]

= 2 + cos C [2 cos A cos B]

= 2 + 2 cos A cos B cos C = R.H.S.                     Proved.

2. If A + B + C = $$\frac{π}{2}$$  prove that,

cos$$^{2}$$ A+ cos$$^{2}$$ B + cos$$^{2}$$ C = 2 + 2sin A  sin B sin C.

Solution:

L.H.S. = cos$$^{2}$$ A+ cos$$^{2}$$ B + cos$$^{2}$$ C

= $$\frac{1}{2}$$(1+ cos 2A) + $$\frac{1}{2}$$(1 + cos 2B)+ cos$$^{2}$$ C [Since, 2 cos$$^{2}$$ A = 1 + cos 2A

⇒ cos$$^{2}$$A = $$\frac{1}{2}$$(1 + cos2A)

Similarly, cos$$^{2}$$B =$$\frac{1}{2}$$(1 + cos 2B)]

= 1 + $$\frac{1}{2}$$(cos 2A + cos 2B) + cos$$^{2}$$ C

= 1+ $$\frac{1}{2}$$ ∙ [2 cos (A + B) cos (A - B)] + 1- sin$$^{2}$$ C

= 2 + sin C cos (A - B) - sin$$^{2}$$ C

[A + B + C = $$\frac{π}{2}$$

⇒ A + B = $$\frac{π}{2}$$  - C

Therefore, cos (A + B) = cos ($$\frac{π}{2}$$ - C)=  sin C]

= 2 + sin C [cos (A - B) - sin C]

= 2 + sin C [cos (A - B) - cos (A + B)], [Since, sin C = cos (A + B)]

= 2 + sin C [2 sin A sin B]

= 2 + 2 sin A sin B sin C = R.H.S.                   Proved.

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

Recent Articles

1. Constructing a Line Segment |Construction of Line Segment|Constructing

Aug 14, 24 09:52 AM

We will discuss here about constructing a line segment. We know how to draw a line segment of a certain length. Suppose we want to draw a line segment of 4.5 cm length.

2. Construction of Perpendicular Lines by Using a Protractor, Set-square

Aug 14, 24 02:39 AM

Construction of perpendicular lines by using a protractor is discussed here. To construct a perpendicular to a given line l at a given point A on it, we need to follow the given procedure

3. Construction of a Circle | Working Rules | Step-by-step Explanation |

Aug 13, 24 01:27 AM

Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

4. Practical Geometry | Ruler | Set-Squares | Protractor |Compass|Divider

Aug 12, 24 03:20 PM

In practical geometry, we study geometrical constructions. The word 'construction' in geometry is used for drawing a correct and accurate figure from the given measurements. In this chapter, we shall…