Identities Involving Squares of Sines and Cosines

Identities involving squares of sines and cosines of multiples or submultiples of the angles involved.

To prove the identities involving squares sines and cosines we use the following algorithm.

Step I: Arrange the terms on the on the L.H.S. of the identity so that either sin\(^{2}\) A - sin\(^{2}\)  B = sin (A + B) sin (A - B) or cos\(^{2}\) A - sin\(^{2}\)  B = cos (A + B) cos (A - B) can be used.

Step II: Take the common factor outside.

Step III: Express the trigonometric ratio of a single angle inside the brackets into that of the sum of the angles.

Step IV: Use the formulas to convert the sum into product.

Examples on Identities involving squares of sines and cosines:

1.  If A + B + C = π, prove that,

sin\(^{2}\) A + sin\(^{2}\) B + sin\(^{2}\) C = 2 + 2 cos A cos B cos C.

Solution:

L.H.S. = sin\(^{2}\) A + sin\(^{2}\) B + sin\(^{2}\) C

= \(\frac{1}{2}\)(1 - cos\(^{2}\) A) + \(\frac{1}{2}\)( 1- cos\(^{2}\) B) + 1- cos\(^{2}\) C

[Since, 2 sin\(^{2}\) A = 1 - cos 2A

⇒ sin\(^{2}\) A = \(\frac{1}{2}\)(1 - cos 2A)

Similarly, sin\(^{2}\) B = \(\frac{1}{2}\)(1 - cos 2B) ]

= 2 - \(\frac{1}{2}\)(cos 2A + cos 2B) - cos\(^{2}\) C

= 2 - \(\frac{1}{2}\) ∙ 2 cos (A + B) cos (A - B) - cos\(^{2}\) C

= 2 + cos C cos (A - B) - cos\(^{2}\) C, [Since, A + B + C = π ⇒ A + B = π - C.

Therefore, cos (A + B) = cos (π - C) = - cos C]

= 2 + cos C [cos (A - B) - cosC]

= 2 + cos C [cos (A - B) + cos (A + B)], [Since, cos C = cos (A + B)]

= 2 + cos C [2 cos A cos B]

= 2 + 2 cos A cos B cos C = R.H.S.                     Proved.

 

2. If A + B + C = \(\frac{π}{2}\)  prove that,

cos\(^{2}\) A+ cos\(^{2}\) B + cos\(^{2}\) C = 2 + 2sin A  sin B sin C.

Solution:

L.H.S. = cos\(^{2}\) A+ cos\(^{2}\) B + cos\(^{2}\) C

= \(\frac{1}{2}\)(1+ cos 2A) + \(\frac{1}{2}\)(1 + cos 2B)+ cos\(^{2}\) C [Since, 2 cos\(^{2}\) A = 1 + cos 2A

⇒ cos\(^{2}\)A = \(\frac{1}{2}\)(1 + cos2A)

 Similarly, cos\(^{2}\)B =\(\frac{1}{2}\)(1 + cos 2B)]

= 1 + \(\frac{1}{2}\)(cos 2A + cos 2B) + cos\(^{2}\) C

= 1+ \(\frac{1}{2}\) ∙ [2 cos (A + B) cos (A - B)] + 1- sin\(^{2}\) C

= 2 + sin C cos (A - B) - sin\(^{2}\) C

[A + B + C = \(\frac{π}{2}\)

⇒ A + B = \(\frac{π}{2}\)  - C   

Therefore, cos (A + B) = cos (\(\frac{π}{2}\) - C)=  sin C]

= 2 + sin C [cos (A - B) - sin C]

= 2 + sin C [cos (A - B) - cos (A + B)], [Since, sin C = cos (A + B)]

= 2 + sin C [2 sin A sin B]

= 2 + 2 sin A sin B sin C = R.H.S.                   Proved.

 Conditional Trigonometric Identities






11 and 12 Grade Math

From Identities Involving Squares of Sines and Cosines to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Area | Units to find Area | Conversion Table of Area | Two Dimensional

    Apr 27, 24 05:41 PM

    Concept of Area
    The amount of surface that a plane figure covers is called its area. It’s unit is square centimeters or square meters etc. A rectangle, a square, a triangle and a circle are all examples of closed pla…

    Read More

  2. Math Only Math | Learn Math Step-by-Step | Worksheet | Videos | Games

    Apr 27, 24 02:23 PM

    Presenting math-only-math to kids, students and children. Mathematical ideas have been explained in the simplest possible way. Here you will have plenty of math help and lots of fun while learning.

    Read More

  3. Worksheet on Use of Decimal | Free Printable Decimals Worksheets

    Apr 27, 24 01:45 PM

    Practice the questions given in the worksheet on use of decimals in calculating money, in measuring the length, in measuring the distance, in measuring the mass and in measuring the capacity.

    Read More

  4. Adding 1-Digit Number | Understand the Concept one Digit Number

    Apr 26, 24 01:55 PM

    Add by Counting Forward
    Understand the concept of adding 1-digit number with the help of objects as well as numbers.

    Read More

  5. Subtracting 2-Digit Numbers | How to Subtract Two Digit Numbers?

    Apr 26, 24 12:36 PM

    Subtracting 2-Digit Numbers
    In subtracting 2-digit numbers we will subtract or minus a two-digit number from another two-digit number. To find the difference between the two numbers we need to ‘ones from ones’ and ‘tens from

    Read More