Identities involving tangents and cotangents of multiples or submultiples of the angles involved.
To prove the identities involving tangents and cotangents we use the following algorithm.
Step I: Express the sum of the two angles in terms of third angle by using the given relation.
Step II: Take tangent of the both sides.
Step III: expand the L.H.S. in step II by using the formula for the tangent of the compound angles
Step IV: Use cross multiplication in the expression obtain in step III.
Step V: Arrange the terms as per the requirement in the sum. If the identity involves cotangents, divide both sides of the identity obtained in step V by the tangents of all angles.
1. If A + B + C = π, prove
that, tan A + tan B + tan C = tan A tan B tan C.
Solution:
A + B + C = π
⇒ A + B = π - C
Therefore, tan (A+ B) = tan (π - C)
⇒ \(\frac{tan
A+ tan B}{1 - tan A tan B}\) = - tan C
⇒ tan A + tan B = - tan C + tan A tan B tan C
⇒ tan A + tan B + tan C = tan A tan B tan C. Proved.
2. If A + B + C = \(\frac{π}{2}\) prove that, cot A + cot B + cot C = cot A cot B cot C.
Solution:
A + B + C = \(\frac{π}{2}\), [Since, A + B + C = \(\frac{π}{2}\) ⇒ A + B = \(\frac{π}{2}\) - C]
Therfore, cot (A + B) = cot (\(\frac{π}{2}\) - C)
⇒ \(\frac{cot A cot B - 1}{cot A + cot B}\) = tan C
⇒ \(\frac{cot A cot B - 1}{cot A + cot B}\) = \(\frac{1}{cot C}\)
⇒ cot A
cot B
cot C
- cot C
= cot A
+ cot B
⇒ cot A + cot B + cot C = cot A cot B cot C. Proved.
3. If A,
B and C are the angles of a triangle, prove that,
tan \(\frac{A}{2}\) tan \(\frac{B}{2}\)+ tan \(\frac{B}{2}\) + tan \(\frac{C}{2}\)
+ tan \(\frac{C}{2}\) tan \(\frac{A}{2}\) = 1.
Solution:
Since A, B, C are the angles of a triangle,
hence, we have, A + B + C = π
\(\frac{A}{2}\)
+ \(\frac{B}{2}\)
= \(\frac{π}{2}\)
- \(\frac{C}{2}\)
⇒ tan (\(\frac{A}{2}\) + \(\frac{B}{2}\)) = tan (\(\frac{π}{2}\) - \(\frac{C}{2}\))
⇒ tan (\(\frac{A}{2}\) + \(\frac{B}{2}\)) = cot \(\frac{C}{2}\)
⇒ \(\frac{tan \frac{A}{2} + tan \frac{B}{2}}{1 - tan \frac{A}{2} ∙ tan \frac{B}{2}}\) = \(\frac{1}{tan \frac{C}{2}}\)
⇒ tan \(\frac{C}{2}\) (tan \(\frac{A}{2}\) + tan \(\frac{B}{2}\)) = 1 - tan \(\frac{A}{2}\) ∙ tan \(\frac{B}{2}\)
⇒ tan \(\frac{A}{2}\) tan \(\frac{B}{2}\) + tan \(\frac{B}{2}\) + tan \(\frac{C}{2}\) + tan \(\frac{C}{2}\) tan \(\frac{A}{2}\) = 1 Proved.
● Conditional Trigonometric Identities
11 and 12 Grade Math
From Identities Involving Tangents and Cotangents to HOME PAGE
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.
Dec 13, 24 08:43 AM
Dec 13, 24 12:31 AM
Dec 12, 24 11:22 PM
Dec 12, 24 10:31 PM
Dec 09, 24 10:39 PM
New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.