Identities Involving Sines and Cosines

Identities involving sines and cosines of multiples or submultiples of the angles involved.

To prove the identities involving sines and cosines we use the following algorithm.

Step I: Convert the sum of first two terms as product by using one of the following formulae:

sin C + sin D = 2 sin \(\frac{C + D}{2}\) cos \(\frac{C - D}{2}\)

sin C - sin D = 2 cos \(\frac{C + D}{2}\) sin \(\frac{C - D}{2}\)

cos C + cos D = 2 cos \(\frac{C + D}{2}\) cos \(\frac{C - D}{2}\)

cos C - cos D  = - 2 sin \(\frac{C + D}{2}\) sin \(\frac{C - D}{2}\)

Step II: In the product obtain in step II replace the sum of two angles in terms of the third by using the given relation.

Step III: Expand the third term by using one of the following formulas:

sin 2θ = 2 sin θ cos θ,

cos 2θ = 2 cos\(^{2}\) θ - 1

cos 2θ = 1 - 2 sin\(^{2}\) θ etc.


Step IV: Take the common factor outside.

Step V: Express the trigonometric ratio of the single angle in terms of the remaining angles.

Step VI: Use one of the formulas given in step I to convert the sum into product.


Examples on identities involving sines and cosines:

1. If A + B + C = π prove that, sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C.

Solution:

L.H.S. = (sin 2A + sin 2B) + sin 2C

= 2 sin \(\frac{2A + 2B}{2}\) cos \(\frac{2A - 2B}{2}\)+ sin 2C

= 2 sin (A + B) cos (A - B) + sin 2C

= 2 sin (π - C) cos (A - B) + sin 2C, [Since, A + B + C = π ⇒ A + B =  π - C]

= 2 sin C cos (A - B) + 2 sin C cos C, [Since  sin (π - C) =  sin C]

= 2 sin C [cos (A - B) + cos C], taking common 2 sin C

= 2 sin C [cos (A - B) + cos {π - (A + B)}], [Since A + B + C = π ⇒ C = π - (A + B)]

= 2 sin C [cos (A - B) - cos (A + B)], [Since cos {π - (A + B)} = - cos (A + B)]

= 2 sin C [2 sin A sin B], [Since cos (A - B) - cos (A + B) = 2 sin A sin B]

= 4 sin A sin B sin C.        Proved.



2. If A + B + C = π prove that, cos 2A + cos 2B - cos 2C = 1- 4 sin A sin B cos C.

Solution:

L.H.S. = cos 2A + cos 2B - cos 2C

= (cos 2A + cos 2B) - cos 2C

= 2 cos \(\frac{2A + 2B}{2}\) cos \(\frac{2A - 2B}{2}\) - cos 2C

= 2 cos (A + B) cos (A- B) - cos 2C

= 2 cos (π - C) cos (A- B) - cos 2C, [Since we know A + B + C = π ⇒A + B = π – C]

= - 2 cos C cos (A - B) – (2 cos\(^{2}\) C - 1), [Since cos (π - C) = - cos C]

= - 2 cos C cos (A - B) - 2 cos\(^{2}\) C + 1

= - 2 cos C [cos (A - B) + cos C] + 1

= -2 cos C [cos (A - B) - cos (A + B)] + 1, [Since cos C = - cos (A + B)]

= -2 cos C [2 sin A sin B] + 1, [Since cos (A - B) - cos (A + B) = 2 sin A sin B]

= 1 - 4 sin A sin B cos C.        Proved.

 Conditional Trigonometric Identities






11 and 12 Grade Math

From Identities Involving Sines and Cosines to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Addition of Mass | Word problems on Addition of Mass

    Nov 13, 24 09:11 AM

    Practice the third grade math worksheet on addition of mass/weight. This sheet provides different types of questions where you need to arrange the values of mass under different columns

    Read More

  2. Addition of Mass |Add the Different Units of Mass |Worked-out Examples

    Nov 12, 24 01:36 PM

    Adding Weight
    In addition of mass we will learn how to add the different units of mass or weight together. While adding we need to follow that the units of mass i.e., kilogram and gram are converted into grams

    Read More

  3. Measuring Mass | Addition and Subtraction of Mass | Measure of Mass

    Nov 12, 24 12:07 PM

    Standard Units to Measure Weight
    We will discuss about measuring mass. We know the vegetable seller is weighing potatoes in kilogram. The goldsmith is weighing a ring in grams. The wheat bags are weighing in quintals.

    Read More

  4. Subtraction of Length | Learn How the Values of Length are Arranged

    Nov 11, 24 02:08 PM

    Subtraction of Length
    The process of subtraction of units of length is exactly similar to that of subtraction of ordinary numbers. Learn how the values of length are arranged in different columns for the subtraction of len…

    Read More

  5. Worksheet on Addition of Length | Word Problems on Addition of Length

    Nov 11, 24 01:52 PM

    Practice the third grade math worksheet on addition of length. This sheet provides different types of questions where you need to arrange the values of length under different columns to find their sum

    Read More