Processing math: 100%

Identities Involving Sines and Cosines

Identities involving sines and cosines of multiples or submultiples of the angles involved.

To prove the identities involving sines and cosines we use the following algorithm.

Step I: Convert the sum of first two terms as product by using one of the following formulae:

sin C + sin D = 2 sin C+D2 cos CD2

sin C - sin D = 2 cos C+D2 sin CD2

cos C + cos D = 2 cos C+D2 cos CD2

cos C - cos D  = - 2 sin C+D2 sin CD2

Step II: In the product obtain in step II replace the sum of two angles in terms of the third by using the given relation.

Step III: Expand the third term by using one of the following formulas:

sin 2θ = 2 sin θ cos θ,

cos 2θ = 2 cos2 θ - 1

cos 2θ = 1 - 2 sin2 θ etc.


Step IV: Take the common factor outside.

Step V: Express the trigonometric ratio of the single angle in terms of the remaining angles.

Step VI: Use one of the formulas given in step I to convert the sum into product.


Examples on identities involving sines and cosines:

1. If A + B + C = π prove that, sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C.

Solution:

L.H.S. = (sin 2A + sin 2B) + sin 2C

= 2 sin 2A+2B2 cos 2A2B2+ sin 2C

= 2 sin (A + B) cos (A - B) + sin 2C

= 2 sin (π - C) cos (A - B) + sin 2C, [Since, A + B + C = π ⇒ A + B =  π - C]

= 2 sin C cos (A - B) + 2 sin C cos C, [Since  sin (π - C) =  sin C]

= 2 sin C [cos (A - B) + cos C], taking common 2 sin C

= 2 sin C [cos (A - B) + cos {π - (A + B)}], [Since A + B + C = π ⇒ C = π - (A + B)]

= 2 sin C [cos (A - B) - cos (A + B)], [Since cos {π - (A + B)} = - cos (A + B)]

= 2 sin C [2 sin A sin B], [Since cos (A - B) - cos (A + B) = 2 sin A sin B]

= 4 sin A sin B sin C.        Proved.



2. If A + B + C = π prove that, cos 2A + cos 2B - cos 2C = 1- 4 sin A sin B cos C.

Solution:

L.H.S. = cos 2A + cos 2B - cos 2C

= (cos 2A + cos 2B) - cos 2C

= 2 cos 2A+2B2 cos 2A2B2 - cos 2C

= 2 cos (A + B) cos (A- B) - cos 2C

= 2 cos (π - C) cos (A- B) - cos 2C, [Since we know A + B + C = π ⇒A + B = π – C]

= - 2 cos C cos (A - B) – (2 cos2 C - 1), [Since cos (π - C) = - cos C]

= - 2 cos C cos (A - B) - 2 cos2 C + 1

= - 2 cos C [cos (A - B) + cos C] + 1

= -2 cos C [cos (A - B) - cos (A + B)] + 1, [Since cos C = - cos (A + B)]

= -2 cos C [2 sin A sin B] + 1, [Since cos (A - B) - cos (A + B) = 2 sin A sin B]

= 1 - 4 sin A sin B cos C.        Proved.

 Conditional Trigonometric Identities






11 and 12 Grade Math

From Identities Involving Sines and Cosines to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Area of a Square and Rectangle | Area of Squares & Rectan

    Jul 19, 25 05:00 AM

    Area and Perimeter of Square and Rectangle
    We will practice the questions given in the worksheet on area of a square and rectangle. We know the amount of surface that a plane figure covers is called its area. 1. Find the area of the square len…

    Read More

  2. Area of Rectangle Square and Triangle | Formulas| Area of Plane Shapes

    Jul 18, 25 10:38 AM

    Area of a Square of Side 1 cm
    Area of a closed plane figure is the amount of surface enclosed within its boundary. Look at the given figures. The shaded region of each figure denotes its area. The standard unit, generally used for…

    Read More

  3. What is Area in Maths? | Units to find Area | Conversion Table of Area

    Jul 17, 25 01:06 AM

    Concept of Area
    The amount of surface that a plane figure covers is called its area. It’s unit is square centimeters or square meters etc. A rectangle, a square, a triangle and a circle are all examples of closed pla…

    Read More

  4. Worksheet on Perimeter | Perimeter of Squares and Rectangle | Answers

    Jul 17, 25 12:40 AM

    Most and Least Perimeter
    Practice the questions given in the worksheet on perimeter. The questions are based on finding the perimeter of the triangle, perimeter of the square, perimeter of rectangle and word problems. I. Find…

    Read More

  5. Formation of Square and Rectangle | Construction of Square & Rectangle

    Jul 16, 25 11:46 PM

    Construction of a Square
    In formation of square and rectangle we will learn how to construct square and rectangle. Construction of a Square: We follow the method given below. Step I: We draw a line segment AB of the required…

    Read More