Subscribe to our YouTube channel for the latest videos, updates, and tips.


Square of Identities Involving Squares of Sines and Cosines

We will learn how to solve identities involving square of sines and cosines of multiples or submultiples of the angles involved.

We use the following ways to solve the identities involving square of sines and cosines.

(i) Express the first two squares of L.H.S. in terms of cos 2A (or cos A).

(ii) Either retain the third term unchanged or make a change using the formula sin\(^{2}\) A+ cos\(^{2}\) A = 1.

(iii) Keeping the numericais (if any) apart, express the sum of two cosines in the form of product.

(iv) Then use the condition A + B + C = π (or A + B + C = \(\frac{π}{2}\))and take one sine or cosine term common.

(v) Finally, express the sum or difference of two sines (or cosines) in the brackets as product.

1. If A + B + C = π, prove that,

cos\(^{2}\) A + cos\(^{2}\) B - cos\(^{2}\) C = 1 - 2 sin A sin B cos C.

Solution:

L.H.S. =  cos\(^{2}\) A + cos\(^{2}\) B - cos\(^{2}\) C

= cos\(^{2}\) A + (1 - sin\(^{2}\) B) - cos\(^{2}\) C

= 1 + [cos\(^{2}\) A - sin\(^{2}\) B] - cos\(^{2}\) C

= 1 + cos (A + B) cos (A - B) - cos\(^{2}\) C

= 1 + cos (π - C) cos (A - B) - cos\(^{2}\) C, [Since A + B + C = π ⇒ A + B = π - C]

= 1 - cos C cos (A - B) - cos\(^{2}\) C

= 1 - cos C [cos (A - B) + cos C]

= 1 - cos C [cos (A - B) + cos {π - (A + B)}], [Since A + B + C = π ⇒ C = π - (A + B)]

= 1 - cos C [cos (A - B) - cos (A + B)]

= 1 - cos C [2 sin A sin B]

= 1 - 2 sin A sin B cos C = R.H.S.                    Proved.


2. If A + B + C = π, prove that,

sin\(^{2}\) \(\frac{A}{2}\) + sin\(^{2}\) \(\frac{A}{2}\) + sin\(^{2}\) \(\frac{A}{2}\) = 1 - 2 sin \(\frac{A}{2}\) - sin \(\frac{B}{2}\) sin \(\frac{C}{2}\)

Solution:

L.H.S. = sin\(^{2}\) \(\frac{A}{2}\) + sin\(^{2}\) \(\frac{B}{2}\) + sin\(^{2}\) \(\frac{C}{2}\)

= \(\frac{1}{2}\)(1 - cos A) + \(\frac{1}{2}\)(1 - cos B) + sin\(^{2}\) \(\frac{C}{2}\), [Since, 2 sin\(^{2}\) \(\frac{A}{2}\) = 1 - cos A                   

⇒ sin\(^{2}\) \(\frac{A}{2}\) = \(\frac{1}{2}\)(1 - cos A)

Similarly, sin\(^{2}\)  \(\frac{B}{2}\) = \(\frac{1}{2}\)( 1 - cos B)]

= 1 - \(\frac{1}{2}\)(cos A + cos B) + sin\(^{2}\) \(\frac{C}{2}\)

= 1 -  \(\frac{1}{2}\) ∙ 2 cos \(\frac{A + B}{2}\)  ∙ cos \(\frac{A - B}{2}\) + sin\(^{2}\) \(\frac{C}{2}\)

=1 - sin \(\frac{C}{2}\)  cos \(\frac{A - B}{2}\)  + sin 2 \(\frac{C}{2}\)

[A + B + C = π ⇒ \(\frac{A + B}{2}\) = \(\frac{π}{2}\)  - \(\frac{C}{2}\).

 Therefore, cos \(\frac{A + B}{2}\) = cos (\(\frac{π}{2}\)  - \(\frac{C}{2}\)) = sin \(\frac{C}{2}\)]

= 1 - sin \(\frac{C}{2}\)[cos \(\frac{A - B}{2}\) - sin \(\frac{C}{2}\)]

= 1 - sin \(\frac{C}{2}\)[cos \(\frac{A - B}{2}\) - cos \(\frac{A + B}{2}\)]   [Since, sin \(\frac{C}{2}\) = cos \(\frac{A + B}{2}\)]

= 1 - sin \(\frac{C}{2}\)[2 sin \(\frac{A}{2}\) ∙ sin \(\frac{B}{2}\)]

= 1 - 2 sin \(\frac{A}{2}\) sin \(\frac{B}{2}\) sin \(\frac{C}{2}\) = R.H.S.                    Proved.

 

3. If A + B + C = π, prove that,

cos\(^{2}\)  \(\frac{A}{2}\)  + cos\(^{2}\) \(\frac{B}{2}\) - cos\(^{2}\) \(\frac{C}{2}\)  = 2 cos \(\frac{A}{2}\) cos \(\frac{B}{2}\)  sin \(\frac{C}{2}\)

Solution:

L.H.S. = cos\(^{2}\)  \(\frac{A}{2}\)  + cos\(^{2}\) \(\frac{B}{2}\) - cos\(^{2}\) \(\frac{C}{2}\)

= \(\frac{1}{2}\)(1 + cos A) + \(\frac{1}{2}\)(1 + cos B) - cos\(^{2}\) \(\frac{C}{2}\), [Since, 2 cos\(^{2}\) \(\frac{A}{2}\)  = 1 + cos A  ⇒ cos\(^{2}\) \(\frac{A}{2}\) = \(\frac{1}{2}\)(1 + cos A)

Similarly, cos\(^{2}\) \(\frac{B}{2}\) = \(\frac{1}{2}\)(1 + cos B)]

=  1 + \(\frac{1}{2}\)(cos A + cos B) - cos\(^{2}\) \(\frac{C}{2}\)

= 1 + \(\frac{1}{2}\) ∙ 2 cos \(\frac{A + B}{2}\) cos \(\frac{A - B}{2}\) - 1 + sin\(^{2}\)  \(\frac{C}{2}\)

= cos \(\frac{A + B}{2}\) cos \(\frac{A - B}{2}\) + sin\(^{2}\)  \(\frac{C}{2}\)

= sin C/2 cos \(\frac{A - B}{2}\) + sin\(^{2}\)  \(\frac{C}{2}\)

[Since, A + B + C = π ⇒ \(\frac{A + B}{2}\)  = \(\frac{π}{2}\) - \(\frac{C}{2}\).

Therefore, cos (\(\frac{A + B}{2}\)) = cos (\(\frac{π}{2}\) - \(\frac{C}{2}\)) = sin \(\frac{C}{2}\)]

= sin \(\frac{C}{2}\) [cos \(\frac{A - B}{2}\) + sin \(\frac{C}{2}\)]

= sin \(\frac{C}{2}\) [cos \(\frac{A - B}{2}\) + cos \(\frac{A + B}{2}\)], [Since, sin \(\frac{C}{2}\) = cos \(\frac{A - B}{2}\)]

= sin \(\frac{C}{2}\) [2 cos \(\frac{A}{2}\) cos \(\frac{B}{2}\)]

= 2 cos \(\frac{A}{2}\) cos \(\frac{B}{2}\) sin \(\frac{C}{2}\) = R.H.S.          Proved.

 Conditional Trigonometric Identities






11 and 12 Grade Math

From Square of Identities Involving Squares of Sines and Cosines to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. How to Find the Average? | What Does Average Mean? | Definition

    May 15, 25 06:05 PM

    Average 2
    Average means a number which is between the largest and the smallest number. Average can be calculated only for similar quantities and not for dissimilar quantities.

    Read More

  2. Worksheet on Rounding Off Number | Rounding off Number | Nearest 10

    May 15, 25 05:12 PM

    In worksheet on rounding off number we will solve 10 different types of problems. 1. Round off to nearest 10 each of the following numbers: (a) 14 (b) 57 (c) 61 (d) 819 (e) 7729 2. Round off to

    Read More

  3. Worksheet on Rounding Decimals | Questions Related to Round a Decimal

    May 15, 25 11:52 AM

    Worksheet on Rounding Decimals
    The worksheet on rounding decimals would be really good for the students to practice huge number of questions related to round a decimal. This worksheet include questions related

    Read More

  4. Rounding Decimals | How to Round a Decimal? | Rounding off Decimal

    May 14, 25 03:01 PM

    Rounding decimals are frequently used in our daily life mainly for calculating the cost of the items. In mathematics rounding off decimal is a technique used to estimate or to find the approximate

    Read More

  5. Rounding Off to the Nearest Whole Number | Nearest 10, 100, and 1000

    May 13, 25 03:43 PM

    Nearest Ten
    Here we will learn how to rounding off to the nearest whole number?

    Read More