Square of Identities Involving Squares of Sines and Cosines

We will learn how to solve identities involving square of sines and cosines of multiples or submultiples of the angles involved.

We use the following ways to solve the identities involving square of sines and cosines.

(i) Express the first two squares of L.H.S. in terms of cos 2A (or cos A).

(ii) Either retain the third term unchanged or make a change using the formula sin\(^{2}\) A+ cos\(^{2}\) A = 1.

(iii) Keeping the numericais (if any) apart, express the sum of two cosines in the form of product.

(iv) Then use the condition A + B + C = π (or A + B + C = \(\frac{π}{2}\))and take one sine or cosine term common.

(v) Finally, express the sum or difference of two sines (or cosines) in the brackets as product.

1. If A + B + C = π, prove that,

cos\(^{2}\) A + cos\(^{2}\) B - cos\(^{2}\) C = 1 - 2 sin A sin B cos C.

Solution:

L.H.S. =  cos\(^{2}\) A + cos\(^{2}\) B - cos\(^{2}\) C

= cos\(^{2}\) A + (1 - sin\(^{2}\) B) - cos\(^{2}\) C

= 1 + [cos\(^{2}\) A - sin\(^{2}\) B] - cos\(^{2}\) C

= 1 + cos (A + B) cos (A - B) - cos\(^{2}\) C

= 1 + cos (π - C) cos (A - B) - cos\(^{2}\) C, [Since A + B + C = π ⇒ A + B = π - C]

= 1 - cos C cos (A - B) - cos\(^{2}\) C

= 1 - cos C [cos (A - B) + cos C]

= 1 - cos C [cos (A - B) + cos {π - (A + B)}], [Since A + B + C = π ⇒ C = π - (A + B)]

= 1 - cos C [cos (A - B) - cos (A + B)]

= 1 - cos C [2 sin A sin B]

= 1 - 2 sin A sin B cos C = R.H.S.                    Proved.


2. If A + B + C = π, prove that,

sin\(^{2}\) \(\frac{A}{2}\) + sin\(^{2}\) \(\frac{A}{2}\) + sin\(^{2}\) \(\frac{A}{2}\) = 1 - 2 sin \(\frac{A}{2}\) - sin \(\frac{B}{2}\) sin \(\frac{C}{2}\)

Solution:

L.H.S. = sin\(^{2}\) \(\frac{A}{2}\) + sin\(^{2}\) \(\frac{B}{2}\) + sin\(^{2}\) \(\frac{C}{2}\)

= \(\frac{1}{2}\)(1 - cos A) + \(\frac{1}{2}\)(1 - cos B) + sin\(^{2}\) \(\frac{C}{2}\), [Since, 2 sin\(^{2}\) \(\frac{A}{2}\) = 1 - cos A                   

⇒ sin\(^{2}\) \(\frac{A}{2}\) = \(\frac{1}{2}\)(1 - cos A)

Similarly, sin\(^{2}\)  \(\frac{B}{2}\) = \(\frac{1}{2}\)( 1 - cos B)]

= 1 - \(\frac{1}{2}\)(cos A + cos B) + sin\(^{2}\) \(\frac{C}{2}\)

= 1 -  \(\frac{1}{2}\) ∙ 2 cos \(\frac{A + B}{2}\)  ∙ cos \(\frac{A - B}{2}\) + sin\(^{2}\) \(\frac{C}{2}\)

=1 - sin \(\frac{C}{2}\)  cos \(\frac{A - B}{2}\)  + sin 2 \(\frac{C}{2}\)

[A + B + C = π ⇒ \(\frac{A + B}{2}\) = \(\frac{π}{2}\)  - \(\frac{C}{2}\).

 Therefore, cos \(\frac{A + B}{2}\) = cos (\(\frac{π}{2}\)  - \(\frac{C}{2}\)) = sin \(\frac{C}{2}\)]

= 1 - sin \(\frac{C}{2}\)[cos \(\frac{A - B}{2}\) - sin \(\frac{C}{2}\)]

= 1 - sin \(\frac{C}{2}\)[cos \(\frac{A - B}{2}\) - cos \(\frac{A + B}{2}\)]   [Since, sin \(\frac{C}{2}\) = cos \(\frac{A + B}{2}\)]

= 1 - sin \(\frac{C}{2}\)[2 sin \(\frac{A}{2}\) ∙ sin \(\frac{B}{2}\)]

= 1 - 2 sin \(\frac{A}{2}\) sin \(\frac{B}{2}\) sin \(\frac{C}{2}\) = R.H.S.                    Proved.

 

3. If A + B + C = π, prove that,

cos\(^{2}\)  \(\frac{A}{2}\)  + cos\(^{2}\) \(\frac{B}{2}\) - cos\(^{2}\) \(\frac{C}{2}\)  = 2 cos \(\frac{A}{2}\) cos \(\frac{B}{2}\)  sin \(\frac{C}{2}\)

Solution:

L.H.S. = cos\(^{2}\)  \(\frac{A}{2}\)  + cos\(^{2}\) \(\frac{B}{2}\) - cos\(^{2}\) \(\frac{C}{2}\)

= \(\frac{1}{2}\)(1 + cos A) + \(\frac{1}{2}\)(1 + cos B) - cos\(^{2}\) \(\frac{C}{2}\), [Since, 2 cos\(^{2}\) \(\frac{A}{2}\)  = 1 + cos A  ⇒ cos\(^{2}\) \(\frac{A}{2}\) = \(\frac{1}{2}\)(1 + cos A)

Similarly, cos\(^{2}\) \(\frac{B}{2}\) = \(\frac{1}{2}\)(1 + cos B)]

=  1 + \(\frac{1}{2}\)(cos A + cos B) - cos\(^{2}\) \(\frac{C}{2}\)

= 1 + \(\frac{1}{2}\) ∙ 2 cos \(\frac{A + B}{2}\) cos \(\frac{A - B}{2}\) - 1 + sin\(^{2}\)  \(\frac{C}{2}\)

= cos \(\frac{A + B}{2}\) cos \(\frac{A - B}{2}\) + sin\(^{2}\)  \(\frac{C}{2}\)

= sin C/2 cos \(\frac{A - B}{2}\) + sin\(^{2}\)  \(\frac{C}{2}\)

[Since, A + B + C = π ⇒ \(\frac{A + B}{2}\)  = \(\frac{π}{2}\) - \(\frac{C}{2}\).

Therefore, cos (\(\frac{A + B}{2}\)) = cos (\(\frac{π}{2}\) - \(\frac{C}{2}\)) = sin \(\frac{C}{2}\)]

= sin \(\frac{C}{2}\) [cos \(\frac{A - B}{2}\) + sin \(\frac{C}{2}\)]

= sin \(\frac{C}{2}\) [cos \(\frac{A - B}{2}\) + cos \(\frac{A + B}{2}\)], [Since, sin \(\frac{C}{2}\) = cos \(\frac{A - B}{2}\)]

= sin \(\frac{C}{2}\) [2 cos \(\frac{A}{2}\) cos \(\frac{B}{2}\)]

= 2 cos \(\frac{A}{2}\) cos \(\frac{B}{2}\) sin \(\frac{C}{2}\) = R.H.S.          Proved.

 Conditional Trigonometric Identities






11 and 12 Grade Math

From Square of Identities Involving Squares of Sines and Cosines to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Multiplying 3-Digit Number by 1-Digit Number | Three-Digit Multiplicat

    Oct 22, 24 03:26 PM

    Multiplying 3-Digit Number by 1-Digit Number
    Here we will learn multiplying 3-digit number by 1-digit number. In two different ways we will learn to multiply a two-digit number by a one-digit number. 1. Multiply 201 by 3 Step I: Arrange the numb…

    Read More

  2. Word Problems on Multiplication |Multiplication Word Problem Worksheet

    Oct 22, 24 01:23 AM

    Multiplication Word Problem
    Word problems on multiplication for fourth grade students are solved here step by step. Problem Sums Involving Multiplication: 1. 24 folders each has 56 sheets of paper inside them. How many sheets of…

    Read More

  3. Worksheet on Word Problems on Multiplication | Multiplication Problems

    Oct 22, 24 12:31 AM

    In worksheet on word problems on multiplication, all grade students can practice the questions on word problems involving multiplication. This exercise sheet on word problems on multiplication

    Read More

  4. Multiplying 2-Digit Number by 1-Digit Number | Multiply Two-Digit Numb

    Oct 21, 24 03:38 PM

    Multiplying 2-Digit Number by 1-Digit Number
    Here we will learn multiplying 2-digit number by 1-digit number. In two different ways we will learn to multiply a two-digit number by a one-digit number. Examples of multiplying 2-digit number by

    Read More

  5. Multiplication Table of 4 |Read and Write the Table of 4|4 Times Table

    Oct 21, 24 02:26 AM

    Multiplication Table of Four
    Repeated addition by 4’s means the multiplication table of 4. (i) When 5 candle-stands having four candles each. By repeated addition we can show 4 + 4 + 4 + 4 + 4 = 20 Then, four 5 times

    Read More