Tangents and Cotangents of Multiples or Submultiples

We will learn how to solve identities involving tangents and cotangents of multiples or submultiples of the angles involved.

We use the following ways to solve the identities involving tangents and cotangents.

(i) Starting step is A + B + C = π (or, A + B + C = \(\frac{π}{2}\))

(ii) Transfer one angle on the right side and take tan (or cot) of both sides.

(iii) Then apply the formula of tan (A+ B) [or cot (A+ B)] and simplify.


1. If A + B + C = π, prove that: tan 2A + tan 2B + tan 2C = tan 2A tan 2B tan 2C

Solution:

Since, A + B + C = π

⇒ 2A + 2B + 2C = 2π

⇒ tan (2A + 2B + 2C) = tan 2π

⇒ \(\frac{tan 2A+ tan 2B + tan 2C - tan 2A tan 2B tan 2C}{1 - tan 2A tan 2B - tan 2B tan 2C - tan 2C tan 2A}\) = 0 

⇒ tan 2A + tan 2B + tan 2C  - tan 2A tan 2B tan 2C = 0

⇒ tan 2A + tan 2B + tan 2C = tan 2A tan 2B tan 2C.               Proved.

 

2. If A + B + C = π, prove that:

\(\frac{cot A + cot B}{tan A + tan B}\) + \(\frac{cot B + cot C}{tan B + tan C}\) + \(\frac{cot C + cot A}{tan C + tan A}\) = 1

Solution:

A + B + C = π                                       

⇒ A + B = π - C

Therefore, tan (A+ B) = tan (π - C)

⇒ \(\frac{tan A+ tan B}{1 - tan A tan B}\) = - tan C 

⇒ tan A + tan B = - tan C + tan A tan B tan C

⇒ tan A + tan B + tan C = tan A tan B tan C.

⇒ \(\frac{tan A + tan B + tan C}{tan A tan B tan C}\) = \(\frac{ tan A tan B tan C}{tan A tan B tan C}\), [Dividing both sides by tan A tan B tan C]

⇒ \(\frac{1}{tan B tan C}\) +  \(\frac{1}{tan C tan A}\) + \(\frac{1}{tan A tan B}\) = 1

⇒ cot B cot C + cot C cot A + cot A cot B = 1

⇒ cot B cot C(\(\frac{tan B + tan C}{tan B + tan C}\)) + cot C cot A (\(\frac{tan C + tan A}{tan C + tan A}\)) + cot A cot B (\(\frac{tan A + tan B}{tan A + tan B}\)) = 1

⇒ \(\frac{cot B + cot C}{tan B + tan C}\) + \(\frac{cot C + cot A}{tan C + tan A}\) + \(\frac{cot A + cot B}{tan A + tan B}\) = 1

⇒ \(\frac{cot A + cot B}{tan A + tan B}\) + \(\frac{cot B + cot C}{tan B + tan C}\) + \(\frac{cot C + cot A}{tan C + tan A}\) = 1                          Proved.


3. Find the simplest value of

cot (y - z) cot (z - x) + cot (z - x) cot (x - y) + cot (x - y) cot(y - z).                                                        

Solution:

Let, A = y - z, B = z - x, C = x - y

Therefore, A + B + C = y - z + z - x + x - y = 0

⇒ A + B + C = 0

⇒ A + B = - C

⇒ cot (A + B) = cot (-C) 

⇒ \(\frac{cot A cot B - 1}{cot A + cot B}\)  = - cot C

⇒ cot A cot B - 1 = - cot C cot A - cot B cot C

⇒ cot A cot B + cot B cot C + cot C cot A = 1

⇒ cot (y - z) cot (z - x) + cot (z - x) cot (x - y) + cot (x - y) cot (y - z) = 1.

 Conditional Trigonometric Identities








11 and 12 Grade Math

From Tangents and Cotangents of Multiples or Submultiples to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Prime and Composite Numbers | Definitions | Examples | Math

    Mar 21, 25 12:18 AM

    5th grade prime and composite numbers

    Read More

  2. 14 Times Table | Read and Write Multiplication Table of 14| Video

    Mar 20, 25 04:03 PM

    14 Times Table
    In 14 times table we will learn how to read and write multiplication table of 14. We read fourteen times table as:One time fourteen is 14 Two times fourteen are 28 Three times fourteen are 42

    Read More

  3. 5th Grade Test of Divisibility Rules | Divisibility Rules From 2 to 12

    Mar 20, 25 04:00 PM

    In 5th grade test of divisibility rules we will learn about the exact divisibility of a number by the numbers from 2 to 12. The digit in the ones place should be 2, 4, 6, 8 or 0.

    Read More

  4. 5th Grade Even and Odd Numbers | Definitions | Examples

    Mar 20, 25 02:45 AM

    Numbers which are exactly divisible by 2 are even numbers. For example. 2,4,6,8,20,48,88, etc. are even numbers. They are multiples of 2. Numbers which are not exactly divisible by 2 are odd numbers…

    Read More

  5. 5th Grade Factors and Multiples | Definitions | Solved Examples | Math

    Mar 20, 25 01:02 AM

    Prime Factor of 312
    Here we will discuss how factors and multiples are related to each other in math. A factor of a number is a divisor which divides the dividend exactly. A factor of a number which is a prime number is…

    Read More