We will learn how to solve identities involving tangents and cotangents of multiples or submultiples of the angles involved.
We use the following ways to solve the identities involving tangents and cotangents.
(i) Starting step is A + B + C = π (or, A + B + C = \(\frac{π}{2}\))
(ii) Transfer one angle on the right side and take tan (or cot) of both sides.
(iii) Then apply the formula of tan (A+ B) [or cot (A+ B)] and simplify.
1. If A + B + C = π, prove that: tan 2A + tan 2B + tan 2C = tan 2A tan 2B tan 2C
Solution:
Since, A + B + C = π
⇒ 2A + 2B + 2C = 2π
⇒ tan (2A + 2B + 2C) = tan 2π
⇒ \(\frac{tan 2A+ tan 2B + tan 2C - tan 2A tan 2B tan 2C}{1 - tan 2A tan 2B - tan 2B tan 2C - tan
2C tan 2A}\) = 0
⇒ tan 2A + tan 2B + tan 2C - tan 2A tan 2B tan 2C = 0
⇒ tan 2A + tan 2B + tan 2C = tan 2A tan 2B tan 2C. Proved.
2. If A + B + C = π, prove that:
\(\frac{cot A + cot B}{tan A + tan B}\) + \(\frac{cot B + cot C}{tan B + tan C}\) + \(\frac{cot C + cot A}{tan C + tan A}\) = 1
Solution:
A + B + C = π
⇒ A + B = π - C
Therefore, tan (A+ B) = tan (π - C)
⇒ \(\frac{tan A+ tan B}{1 - tan A tan B}\) = - tan C
⇒ tan A + tan B = - tan C + tan A tan B tan C
⇒ tan A + tan B + tan C = tan A tan B tan C.
⇒ \(\frac{tan A + tan B + tan C}{tan A tan B tan C}\) = \(\frac{ tan A tan B tan C}{tan A tan B tan C}\), [Dividing both sides by tan A tan B tan C]
⇒ \(\frac{1}{tan B tan C}\) + \(\frac{1}{tan C tan A}\) + \(\frac{1}{tan A tan B}\) = 1
⇒ cot B cot C + cot C cot A + cot A cot B = 1
⇒ cot B cot C(\(\frac{tan B + tan C}{tan B + tan C}\)) + cot C cot A (\(\frac{tan C + tan A}{tan C + tan A}\)) + cot A cot B (\(\frac{tan A + tan B}{tan A + tan B}\)) = 1
⇒ \(\frac{cot B + cot C}{tan B + tan C}\) + \(\frac{cot C + cot A}{tan C + tan A}\) + \(\frac{cot A + cot B}{tan A + tan B}\) = 1
⇒ \(\frac{cot A + cot B}{tan A + tan B}\) + \(\frac{cot B + cot C}{tan B + tan C}\) + \(\frac{cot C + cot A}{tan C + tan A}\) = 1 Proved.
3. Find the simplest value of
cot (y - z) cot (z - x) + cot (z - x) cot (x - y) + cot (x - y) cot(y - z).
Solution:
Let, A = y - z, B = z - x, C = x - y
Therefore, A + B + C = y - z + z - x + x - y = 0
⇒ A + B + C = 0
⇒ A + B = - C
⇒ cot (A + B) = cot (-C)
⇒ \(\frac{cot A cot B - 1}{cot A + cot B}\) = - cot C
⇒ cot A cot B - 1 = - cot C cot A - cot B cot C
⇒
cot A cot
B + cot B cot C + cot C cot A = 1
⇒
cot (y - z) cot (z - x) + cot (z - x) cot (x - y) + cot (x - y) cot (y - z) = 1.
● Conditional Trigonometric Identities
11 and 12 Grade Math
From Tangents and Cotangents of Multiples or Submultiples to HOME PAGE
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.
Sep 14, 24 04:31 PM
Sep 14, 24 03:39 PM
Sep 14, 24 02:12 PM
Sep 13, 24 02:48 AM
Sep 12, 24 03:07 PM
New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.