sin θ = 0

How to find the general solution of the equation sin θ = 0?

Prove that the general solution of sin θ = 0 is θ = nπ, n ∈ Z

Solution:

According to the figure, by definition, we have,

Sine function is defined as the ratio of the side opposite divided by the hypotenuse.

Let O be the centre of a unit circle. We know that in unit circle, the length of the circumference is 2π.

If we started from A and moves in anticlockwise direction then at the points A, B, A', B' and A, the arc length travelled are 0, \(\frac{π}{2}\), π, \(\frac{3π}{2}\), and 2π.

Therefore, from the above unit circle it is clear that

sin θ = \(\frac{PM}{OP}\)

Now, sin θ = 0

⇒ \(\frac{PM}{OP}\) = 0

⇒ PM = 0.

So when will the sine be equal to zero?

Clearly, if PM = 0 then the final arm OP of the angle θ coincides with OX or, OX'.

Similarly, the final  arm  OP coincides with OX  or OX'  when θ = 0, π, 2π, 3π, 4π, 5π …………….., -π, , -2π, -3π, -4π, -5π ………., i.e., when  θ = 0  or an integral multiples of π i.e., when θ = nπ where n ∈ Z (i.e., n = 0, ± 1, ± 2, ± 3,…….)

Hence, θ = nπ, n ∈ Z is the general solution of the given equation sin θ = 0


1. Find the general solution of the equation sin 2θ = 0

Solution:

sin 2θ = 0

⇒ 2θ = nπ, where, n = 0, ± 1, ± 2, ± 3,……., [Since, we know that θ = nπ, n ∈ Z is the general solution of the given equation sin θ = 0]

⇒ θ = \(\frac{nπ}{2}\), where, n = 0, ± 1, ± 2, ± 3,…….

Therefore, the general solution of the equation sin 2θ = 0 is θ = \(\frac{nπ}{2}\), where, n = 0, ± 1, ± 2, ± 3,…….


2. Find the general solution of the equation sin \(\frac{3x}{2}\) = 0

Solution:

sin \(\frac{3x}{2}\) = 0

⇒ \(\frac{3x}{2}\) = nπ, where, n = 0, ± 1, ± 2, ± 3,…….[Since, we know that θ = nπ, n ∈ Z is the general solution of the given equation sin θ = 0]

⇒ x = \(\frac{2nπ}{3}\), where, n = 0, ± 1, ± 2, ± 3,…….

Therefore, the general solution of the equation sin \(\frac{3x}{2}\) = 0 is θ = \(\frac{2nπ}{3}\), where, n = 0, ± 1, ± 2, ± 3,…….


3. Find the general solution of the equation tan 3x = tan 2x + tan x

Solution:

tan 3x = tan 2x + tan x

⇒ \(\frac{sin    3x}{cos    3x}\) =  \(\frac{sin  2x}{cos  2x}\) + \(\frac{sin  x}{cos  x}\)

⇒ \(\frac{sin  3x}{cos  3x}\) = \(\frac{sin  2x   cos  x  +  cos  2x   sin  x}{cos  2x    cos  x}\)

cos 3θ sin (2x + x) = sin 3x cos 2x cos x

cos 3x sin 3x = sin 3x cos 2x cosx

cos 3x sin 3x - sin 3x cos 2x cos x = 0

sin 3x [cos (2x + x) - cos 2x cos x] = 0  

sin 3x . sin 2x sin x = 0

Either either, sin 3x = 0 or, sin 2x = 0 or, sin x = 0

3x = nπ or, 2x = nπ or, x = nπ

x = \(\frac{nπ}{3}\)  …..... (1) or, x = \(\frac{nπ}{2}\)  …..... (2) or, x = nπ …..... (3), where n ∈ I

Clearly, the value of x given in (2) are∶ 0, \(\frac{π}{2}\), π, \(\frac{3π}{2}\), 2π, \(\frac{5π}{2}\) ……………., - \(\frac{π}{2}\),- π, - \(\frac{3π}{2}\) , …………

It is readily seen that the solution x = \(\frac{π}{2}\), \(\frac{3π}{2}\), \(\frac{5π}{2}\)………, - \(\frac{π}{2}\), - \(\frac{3π}{2}\),………
Of the above solution do not satisfy the given equation.

Further  to not  that the  rest  solutions of (2) and the  solution of (3) are contained  in the solutions (1).

Therefore, the general solution of the equation tan 3x = tan 2x + tan x is x = \(\frac{3π}{2}\),, where n ∈ I


4. Find the general solution of the equation sin\(^{2}\) 2x = 0

Solution:

sin\(^{2}\) 2x = 0

sin 2x = 0

⇒ 2x = nπ, where, n = 0, ± 1, ± 2, ± 3,……., [Since, we know that θ = nπ, n ∈ Z is the general solution of the given equation sin θ = 0]

⇒ x = \(\frac{nπ}{2}\), where, n = 0, ± 1, ± 2, ± 3,…….

Therefore, the general solution of the equation sin\(^{2}\) 2x = 0 is x = \(\frac{nπ}{2}\), where, n = 0, ± 1, ± 2, ± 3,…….

 Trigonometric Equations






11 and 12 Grade Math

From sin θ = 0 to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Perimeter of a Square | How to Find the Perimeter of Square? |Examples

    Apr 25, 24 05:34 PM

    Perimeter of a Square
    We will discuss here how to find the perimeter of a square. Perimeter of a square is the total length (distance) of the boundary of a square. We know that all the sides of a square are equal. Perimete…

    Read More

  2. Perimeter of a Triangle | Perimeter of a Triangle Formula | Examples

    Apr 25, 24 05:13 PM

    Perimeter of a Triangle
    We will discuss here how to find the perimeter of a triangle. We know perimeter of a triangle is the total length (distance) of the boundary of a triangle. Perimeter of a triangle is the sum of length…

    Read More

  3. Perimeter of a Rectangle | How to Find the Perimeter of a Rectangle?

    Apr 25, 24 03:45 PM

    Perimeter of a Rectangle
    We will discuss here how to find the perimeter of a rectangle. We know perimeter of a rectangle is the total length (distance) of the boundary of a rectangle. ABCD is a rectangle. We know that the opp…

    Read More

  4. Dividing 3-Digit by 1-Digit Number | Long Division |Worksheet Answer

    Apr 24, 24 03:46 PM

    Dividing 3-Digit by 1-Digit Number
    Dividing 3-Digit by 1-Digit Numbers are discussed here step-by-step. How to divide 3-digit numbers by single-digit numbers? Let us follow the examples to learn to divide 3-digit number by one-digit nu…

    Read More

  5. Symmetrical Shapes | One, Two, Three, Four & Many-line Symmetry

    Apr 24, 24 03:45 PM

    Symmetrical Figures
    Symmetrical shapes are discussed here in this topic. Any object or shape which can be cut in two equal halves in such a way that both the parts are exactly the same is called symmetrical. The line whi…

    Read More