# Transitive Relation on Set

What is transitive relation on set?

Let A be a set in which the relation R defined.

R is said to be transitive, if

(a, b) ∈ R and (b, a) ∈ R ⇒ (a, c) ∈ R,

That is aRb and bRc ⇒ aRc where a, b, c ∈ A.

The relation is said to be non-transitive, if

(a, b) ∈ R and (b, c) ∈ R do not imply (a, c ) ∈ R.

For example, in the set A of natural numbers if the relation R be defined by ‘x less than y’ then

a < b and b < c imply a < c, that is, aRb and bRc ⇒ aRc.

Hence this relation is transitive.

Solved example of transitive relation on set:

1. Let k be given fixed positive integer.

Let R = {(a, a) : a, b  ∈ Z and (a – b) is divisible by k}.

Show that R is transitive relation.

Solution:

Given R = {(a, b) : a, b ∈ Z, and (a – b) is divisible by k}.

Let (a, b) ∈ R and (b, c) ∈ R. Then

(a, b) ∈ R and (b, c) ∈ R

⇒ (a – b) is divisible by k and (b – c) is divisible by k.

⇒ {(a – b) + (b – c)} is divisible by k.

⇒ (a – c) is divisible by k.

⇒ (a, c) ∈ R.

Therefore, (a, b) ∈ R and (b, c) ∈ R    (a, c) ∈ R.

So, R is transitive relation.

2. A relation ρ on the set N is given by “ρ = {(a, b) ∈ N × N : a is divisor of b}”. Examine whether ρ is transitive or not transitive relation on set N.

Solution:

Given ρ = {(a, b) ∈ N × N : a is divisor of b}.

Let m, n, p ∈ N and (m, n) ∈ ρ and  (n, p ) ∈ ρ. Then

(m, n) ∈ ρ and  (n, p ) ∈ ρ

⇒ m is divisor of n and n is divisor of p

⇒ m is divisor of p

⇒ (m, p) ∈ ρ

Therefore, (m, n) ∈ ρ and (n, p) ∈ ρ ⇒ (m, p) ∈ ρ.

So, R is transitive relation.

Set Theory

Sets

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

## Recent Articles

1. ### Fraction as a Part of Collection | Pictures of Fraction | Fractional

Feb 24, 24 04:33 PM

How to find fraction as a part of collection? Let there be 14 rectangles forming a box or rectangle. Thus, it can be said that there is a collection of 14 rectangles, 2 rectangles in each row. If it i…

2. ### Fraction of a Whole Numbers | Fractional Number |Examples with Picture

Feb 24, 24 04:11 PM

Fraction of a whole numbers are explained here with 4 following examples. There are three shapes: (a) circle-shape (b) rectangle-shape and (c) square-shape. Each one is divided into 4 equal parts. One…

3. ### Identification of the Parts of a Fraction | Fractional Numbers | Parts

Feb 24, 24 04:10 PM

We will discuss here about the identification of the parts of a fraction. We know fraction means part of something. Fraction tells us, into how many parts a whole has been

4. ### Numerator and Denominator of a Fraction | Numerator of the Fraction

Feb 24, 24 04:09 PM

What are the numerator and denominator of a fraction? We have already learnt that a fraction is written with two numbers arranged one over the other and separated by a line.