Subscribe to our YouTube channel for the latest videos, updates, and tips.


Sum of the Interior Angles of a Polygon

We will learn how to find the sum of the interior angles of a polygon having n sides.

We know that if a polygon has ‘n’ sides, then it is divided into (n – 2) triangles. 

We also know that, the sum of the angles of a triangle = 180°.

Therefore, the sum of the angles of (n – 2) triangles = 180 × (n – 2)

                                                                            = 2 right angles × (n – 2)

                                                                            = 2(n – 2) right angles

                                                                            = (2n – 4) right angles

Therefore, the sum of interior angles of a polygon having n sides is (2n – 4) right angles.

Thus, each interior angle of the polygon = (2n – 4)/n right angles.

Now we will learn how to find the find the sum of interior angles of different polygons using the formula.

Name

Figure

Number of Sides

Sum of interior angles (2n - 4) right angles

Triangle

Figure Triangle

3

(2n - 4) right angles

= (2 × 3 - 4) × 90°

= (6 - 4) × 90°

= 2 × 90°

= 180°

Quadrilateral

Figure Quadrilateral

4

(2n - 4) right angles

= (2 × 4 - 4) × 90°

= (8 - 4) × 90°

= 4 × 90°

= 36

Pentagon

Figure Pentagon

5

(2n - 4) right angles

= (2 × 5 - 4) × 90°

= (10 - 4) × 90°

= 6 × 90°

= 54

Hexagon

Figure Hexagon

6

(2n - 4) right angles

= (2 × 6 - 4) × 90°

= (12 - 4) × 90°

= 8 × 90°

= 72

Heptagon

Figure Heptagon

7

(2n - 4) right angles

= (2 × 7 - 4) × 90°

= (14 - 4) × 90°

= 10 × 90°

= 90

Octagon

Figure Octagon

8

(2n - 4) right angles

= (2 × 8 - 4) × 90°

= (16 - 4) × 90°

= 12 × 90°

= 108


Solved examples on sum of the interior angles of a polygon:

1. Find the sum of the measure of interior angle of a polygon having 19 sides.

Solution:

We know that the sum of the interior angles of a polygon is (2n  - 4) right angles

Here, the number of sides = 19

Therefore, sum of the interior angles = (2 × 19 – 4) × 90°

                                                 = (38 – 4) 90°

                                                 = 34 × 90°

                                                 = 3060°



2. Each interior angle of a regular polygon is 135 degree then find the number of sides.

Solution:

Let the number of sides of a regular polygon = n

Then the measure of each of its interior angle = [(2n – 4) × 90°]/n

Given measure of each angle = 135°

Therefore, [(2n – 4) × 90]/n = 135

            ⇒      (2n – 4) × 90 = 135n

            ⇒         180n – 360 = 135n

            ⇒        180n - 135n = 360

            ⇒                    45n = 360

            ⇒                       n = 360/45

            ⇒                       n = 8  

Therefore the number of sides of the regular polygon is 8.

Polygons

Polygon and its Classification

Terms Related to Polygons

Interior and Exterior of the Polygon

Convex and Concave Polygons

Regular and Irregular Polygon

Number of Triangles Contained in a Polygon

Angle Sum Property of a Polygon

Problems on Angle Sum Property of a Polygon

Sum of the Interior Angles of a Polygon

Sum of the Exterior Angles of a Polygon






7th Grade Math Problems 

8th Grade Math Practice 

From Sum of the Interior Angles of a Polygon to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Expanded form of Decimal Fractions |How to Write a Decimal in Expanded

    May 07, 25 01:48 AM

    Expanded form of Decimal
    Decimal numbers can be expressed in expanded form using the place-value chart. In expanded form of decimal fractions we will learn how to read and write the decimal numbers. Note: When a decimal is mi…

    Read More

  2. Dividing Decimals Word Problems Worksheet | Answers |Decimals Division

    May 07, 25 01:33 AM

    Dividing Decimals Word Problems Worksheet
    In dividing decimals word problems worksheet we will get different types of problems on decimals division word problems, dividing a decimal by a whole number, dividing a decimals and dividing a decima…

    Read More

  3. How to Divide Decimals? | Dividing Decimals by Decimals | Examples

    May 06, 25 01:23 AM

    Dividing a Decimal by a Whole Number
    Dividing Decimals by Decimals I. Dividing a Decimal by a Whole Number: II. Dividing a Decimal by another Decimal: If the dividend and divisor are both decimal numbers, we multiply both the numbers by…

    Read More

  4. Multiplying Decimal by a Whole Number | Step-by-step Explanation|Video

    May 06, 25 12:01 AM

    Multiplying decimal by a whole number is just same like multiply as usual. How to multiply a decimal by a whole number? To multiply a decimal by a whole number follow the below steps

    Read More

  5. Word Problems on Decimals | Decimal Word Problems | Decimal Home Work

    May 05, 25 01:27 AM

    Word problems on decimals are solved here step by step. The product of two numbers is 42.63. If one number is 2.1, find the other. Solution: Product of two numbers = 42.63 One number = 2.1

    Read More

Polygons - Worksheets

Worksheet on Polygon and its Classification

Worksheet on Interior Angles of a Polygon

Worksheet on Exterior Angles of a Polygon