Sum of the Interior Angles of a Polygon

We will learn how to find the sum of the interior angles of a polygon having n sides.

We know that if a polygon has ‘n’ sides, then it is divided into (n – 2) triangles. 

We also know that, the sum of the angles of a triangle = 180°.

Therefore, the sum of the angles of (n – 2) triangles = 180 × (n – 2)

                                                                            = 2 right angles × (n – 2)

                                                                            = 2(n – 2) right angles

                                                                            = (2n – 4) right angles

Therefore, the sum of interior angles of a polygon having n sides is (2n – 4) right angles.

Thus, each interior angle of the polygon = (2n – 4)/n right angles.

Now we will learn how to find the find the sum of interior angles of different polygons using the formula.

Name

Figure

Number of Sides

Sum of interior angles (2n - 4) right angles

Triangle

Figure Triangle

3

(2n - 4) right angles

= (2 × 3 - 4) × 90°

= (6 - 4) × 90°

= 2 × 90°

= 180°

Quadrilateral

Figure Quadrilateral

4

(2n - 4) right angles

= (2 × 4 - 4) × 90°

= (8 - 4) × 90°

= 4 × 90°

= 36

Pentagon

Figure Pentagon

5

(2n - 4) right angles

= (2 × 5 - 4) × 90°

= (10 - 4) × 90°

= 6 × 90°

= 54

Hexagon

Figure Hexagon

6

(2n - 4) right angles

= (2 × 6 - 4) × 90°

= (12 - 4) × 90°

= 8 × 90°

= 72

Heptagon

Figure Heptagon

7

(2n - 4) right angles

= (2 × 7 - 4) × 90°

= (14 - 4) × 90°

= 10 × 90°

= 90

Octagon

Figure Octagon

8

(2n - 4) right angles

= (2 × 8 - 4) × 90°

= (16 - 4) × 90°

= 12 × 90°

= 108


Solved examples on sum of the interior angles of a polygon:

1. Find the sum of the measure of interior angle of a polygon having 19 sides.

Solution:

We know that the sum of the interior angles of a polygon is (2n  - 4) right angles

Here, the number of sides = 19

Therefore, sum of the interior angles = (2 × 19 – 4) × 90°

                                                 = (38 – 4) 90°

                                                 = 34 × 90°

                                                 = 3060°



2. Each interior angle of a regular polygon is 135 degree then find the number of sides.

Solution:

Let the number of sides of a regular polygon = n

Then the measure of each of its interior angle = [(2n – 4) × 90°]/n

Given measure of each angle = 135°

Therefore, [(2n – 4) × 90]/n = 135

            ⇒      (2n – 4) × 90 = 135n

            ⇒         180n – 360 = 135n

            ⇒        180n - 135n = 360

            ⇒                    45n = 360

            ⇒                       n = 360/45

            ⇒                       n = 8  

Therefore the number of sides of the regular polygon is 8.

Polygons

Polygon and its Classification

Terms Related to Polygons

Interior and Exterior of the Polygon

Convex and Concave Polygons

Regular and Irregular Polygon

Number of Triangles Contained in a Polygon

Angle Sum Property of a Polygon

Problems on Angle Sum Property of a Polygon

Sum of the Interior Angles of a Polygon

Sum of the Exterior Angles of a Polygon






7th Grade Math Problems 

8th Grade Math Practice 

From Sum of the Interior Angles of a Polygon to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Addition of Three 1-Digit Numbers | Add 3 Single Digit Numbers | Steps

    Sep 19, 24 12:56 AM

    Addition of Three 1-Digit Numbers
    To add three numbers, we add any two numbers first. Then, we add the third number to the sum of the first two numbers. For example, let us add the numbers 3, 4 and 5. We can write the numbers horizont…

    Read More

  2. Adding 1-Digit Number | Understand the Concept one Digit Number

    Sep 18, 24 03:29 PM

    Add by Counting Forward
    Understand the concept of adding 1-digit number with the help of objects as well as numbers.

    Read More

  3. Addition of Numbers using Number Line | Addition Rules on Number Line

    Sep 18, 24 02:47 PM

    Addition Using the Number Line
    Addition of numbers using number line will help us to learn how a number line can be used for addition. Addition of numbers can be well understood with the help of the number line.

    Read More

  4. Counting Before, After and Between Numbers up to 10 | Number Counting

    Sep 17, 24 01:47 AM

    Before After Between
    Counting before, after and between numbers up to 10 improves the child’s counting skills.

    Read More

  5. Worksheet on Three-digit Numbers | Write the Missing Numbers | Pattern

    Sep 17, 24 12:10 AM

    Reading 3-digit Numbers
    Practice the questions given in worksheet on three-digit numbers. The questions are based on writing the missing number in the correct order, patterns, 3-digit number in words, number names in figures…

    Read More

Polygons - Worksheets

Worksheet on Polygon and its Classification

Worksheet on Interior Angles of a Polygon

Worksheet on Exterior Angles of a Polygon