Sum of the Interior Angles of a Polygon

We will learn how to find the sum of the interior angles of a polygon having n sides.

We know that if a polygon has ‘n’ sides, then it is divided into (n – 2) triangles. 

We also know that, the sum of the angles of a triangle = 180°.

Therefore, the sum of the angles of (n – 2) triangles = 180 × (n – 2)

                                                                            = 2 right angles × (n – 2)

                                                                            = 2(n – 2) right angles

                                                                            = (2n – 4) right angles

Therefore, the sum of interior angles of a polygon having n sides is (2n – 4) right angles.

Thus, each interior angle of the polygon = (2n – 4)/n right angles.

Now we will learn how to find the find the sum of interior angles of different polygons using the formula.

Name

Figure

Number of Sides

Sum of interior angles (2n - 4) right angles

Triangle

Figure Triangle

3

(2n - 4) right angles

= (2 × 3 - 4) × 90°

= (6 - 4) × 90°

= 2 × 90°

= 180°

Quadrilateral

Figure Quadrilateral

4

(2n - 4) right angles

= (2 × 4 - 4) × 90°

= (8 - 4) × 90°

= 4 × 90°

= 36

Pentagon

Figure Pentagon

5

(2n - 4) right angles

= (2 × 5 - 4) × 90°

= (10 - 4) × 90°

= 6 × 90°

= 54

Hexagon

Figure Hexagon

6

(2n - 4) right angles

= (2 × 6 - 4) × 90°

= (12 - 4) × 90°

= 8 × 90°

= 72

Heptagon

Figure Heptagon

7

(2n - 4) right angles

= (2 × 7 - 4) × 90°

= (14 - 4) × 90°

= 10 × 90°

= 90

Octagon

Figure Octagon

8

(2n - 4) right angles

= (2 × 8 - 4) × 90°

= (16 - 4) × 90°

= 12 × 90°

= 108


Solved examples on sum of the interior angles of a polygon:

1. Find the sum of the measure of interior angle of a polygon having 19 sides.

Solution:

We know that the sum of the interior angles of a polygon is (2n  - 4) right angles

Here, the number of sides = 19

Therefore, sum of the interior angles = (2 × 19 – 4) × 90°

                                                 = (38 – 4) 90°

                                                 = 34 × 90°

                                                 = 3060°



2. Each interior angle of a regular polygon is 135 degree then find the number of sides.

Solution:

Let the number of sides of a regular polygon = n

Then the measure of each of its interior angle = [(2n – 4) × 90°]/n

Given measure of each angle = 135°

Therefore, [(2n – 4) × 90]/n = 135

            ⇒      (2n – 4) × 90 = 135n

            ⇒         180n – 360 = 135n

            ⇒        180n - 135n = 360

            ⇒                    45n = 360

            ⇒                       n = 360/45

            ⇒                       n = 8  

Therefore the number of sides of the regular polygon is 8.

Polygons

Polygon and its Classification

Terms Related to Polygons

Interior and Exterior of the Polygon

Convex and Concave Polygons

Regular and Irregular Polygon

Number of Triangles Contained in a Polygon

Angle Sum Property of a Polygon

Problems on Angle Sum Property of a Polygon

Sum of the Interior Angles of a Polygon

Sum of the Exterior Angles of a Polygon






7th Grade Math Problems 

8th Grade Math Practice 

From Sum of the Interior Angles of a Polygon to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

    Dec 13, 24 08:43 AM

    Complete the Series Patterns
    We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…

    Read More

  2. Patterns in Math | Missing Number | Counting Numbers | Worksheets

    Dec 13, 24 12:31 AM

    Finding patterns in math is very important to understand the sequence in the series. We need to find the exact missing number that from the group of numbers. The counting numbers may be counting

    Read More

  3. Concept of Pattern | Similar Patterns in Mathematics | Similar Pattern

    Dec 12, 24 11:22 PM

    Patterns in Necklace
    Concept of pattern will help us to learn the basic number patterns and table patterns. Animals such as all cows, all lions, all dogs and all other animals have dissimilar features. All mangoes have si…

    Read More

  4. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 12, 24 10:31 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  5. Types of Lines |Straight Lines|Curved Lines|Horizontal Lines| Vertical

    Dec 09, 24 10:39 PM

    Types of Lines
    What are the different types of lines? There are two different kinds of lines. (i) Straight line and (ii) Curved line. There are three different types of straight lines. (i) Horizontal lines, (ii) Ver…

    Read More

Polygons - Worksheets

Worksheet on Polygon and its Classification

Worksheet on Interior Angles of a Polygon

Worksheet on Exterior Angles of a Polygon