Sum of the Interior Angles of a Polygon

We will learn how to find the sum of the interior angles of a polygon having n sides.

We know that if a polygon has ‘n’ sides, then it is divided into (n – 2) triangles. 

We also know that, the sum of the angles of a triangle = 180°.

Therefore, the sum of the angles of (n – 2) triangles = 180 × (n – 2)

                                                                            = 2 right angles × (n – 2)

                                                                            = 2(n – 2) right angles

                                                                            = (2n – 4) right angles

Therefore, the sum of interior angles of a polygon having n sides is (2n – 4) right angles.

Thus, each interior angle of the polygon = (2n – 4)/n right angles.

Now we will learn how to find the find the sum of interior angles of different polygons using the formula.

Name

Figure

Number of Sides

Sum of interior angles (2n - 4) right angles

Triangle

Figure Triangle

3

(2n - 4) right angles

= (2 × 3 - 4) × 90°

= (6 - 4) × 90°

= 2 × 90°

= 180°

Quadrilateral

Figure Quadrilateral

4

(2n - 4) right angles

= (2 × 4 - 4) × 90°

= (8 - 4) × 90°

= 4 × 90°

= 36

Pentagon

Figure Pentagon

5

(2n - 4) right angles

= (2 × 5 - 4) × 90°

= (10 - 4) × 90°

= 6 × 90°

= 54

Hexagon

Figure Hexagon

6

(2n - 4) right angles

= (2 × 6 - 4) × 90°

= (12 - 4) × 90°

= 8 × 90°

= 72

Heptagon

Figure Heptagon

7

(2n - 4) right angles

= (2 × 7 - 4) × 90°

= (14 - 4) × 90°

= 10 × 90°

= 90

Octagon

Figure Octagon

8

(2n - 4) right angles

= (2 × 8 - 4) × 90°

= (16 - 4) × 90°

= 12 × 90°

= 108


Solved examples on sum of the interior angles of a polygon:

1. Find the sum of the measure of interior angle of a polygon having 19 sides.

Solution:

We know that the sum of the interior angles of a polygon is (2n  - 4) right angles

Here, the number of sides = 19

Therefore, sum of the interior angles = (2 × 19 – 4) × 90°

                                                 = (38 – 4) 90°

                                                 = 34 × 90°

                                                 = 3060°



2. Each interior angle of a regular polygon is 135 degree then find the number of sides.

Solution:

Let the number of sides of a regular polygon = n

Then the measure of each of its interior angle = [(2n – 4) × 90°]/n

Given measure of each angle = 135°

Therefore, [(2n – 4) × 90]/n = 135

            ⇒      (2n – 4) × 90 = 135n

            ⇒         180n – 360 = 135n

            ⇒        180n - 135n = 360

            ⇒                    45n = 360

            ⇒                       n = 360/45

            ⇒                       n = 8  

Therefore the number of sides of the regular polygon is 8.

Polygons

Polygon and its Classification

Terms Related to Polygons

Interior and Exterior of the Polygon

Convex and Concave Polygons

Regular and Irregular Polygon

Number of Triangles Contained in a Polygon

Angle Sum Property of a Polygon

Problems on Angle Sum Property of a Polygon

Sum of the Interior Angles of a Polygon

Sum of the Exterior Angles of a Polygon






7th Grade Math Problems 

8th Grade Math Practice 

From Sum of the Interior Angles of a Polygon to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Converting Fractions to Decimals | Solved Examples | Free Worksheet

    Apr 28, 25 01:43 AM

    Converting Fractions to Decimals
    In converting fractions to decimals, we know that decimals are fractions with denominators 10, 100, 1000 etc. In order to convert other fractions into decimals, we follow the following steps:

    Read More

  2. Expanded Form of a Number | Writing Numbers in Expanded Form | Values

    Apr 27, 25 10:13 AM

    Expanded Form of a Number
    We know that the number written as sum of the place-values of its digits is called the expanded form of a number. In expanded form of a number, the number is shown according to the place values of its…

    Read More

  3. Converting Decimals to Fractions | Solved Examples | Free Worksheet

    Apr 26, 25 04:56 PM

    Converting Decimals to Fractions
    In converting decimals to fractions, we know that a decimal can always be converted into a fraction by using the following steps: Step I: Obtain the decimal. Step II: Remove the decimal points from th…

    Read More

  4. Worksheet on Decimal Numbers | Decimals Number Concepts | Answers

    Apr 26, 25 03:48 PM

    Worksheet on Decimal Numbers
    Practice different types of math questions given in the worksheet on decimal numbers, these math problems will help the students to review decimals number concepts.

    Read More

  5. Multiplication Table of 4 |Read and Write the Table of 4|4 Times Table

    Apr 26, 25 01:00 PM

    Multiplication Table of Four
    Repeated addition by 4’s means the multiplication table of 4. (i) When 5 candle-stands having four candles each. By repeated addition we can show 4 + 4 + 4 + 4 + 4 = 20 Then, four 5 times

    Read More

Polygons - Worksheets

Worksheet on Polygon and its Classification

Worksheet on Interior Angles of a Polygon

Worksheet on Exterior Angles of a Polygon