Subsets of a given Set

Number of Subsets of a given Set:

If a set contains ‘n’ elements, then the number of subsets of the set is 2\(^{n}\).


Number of Proper Subsets of the Set:

If a set contains ‘n’ elements, then the number of proper subsets of the set is 2\(^{n}\) - 1.

 If A = {p, q} the proper subsets of A are [{ }, {p}, {q}]

⇒ Number of proper subsets of A are 3 = 2\(^{2}\) - 1 = 4 - 1

In general, number of proper subsets of a given set = 2\(^{m}\) - 1, where m is the number of elements.

For example:

1. If A {1, 3, 5}, then write all the possible subsets of A. Find their numbers.

Solution:

The subset of A containing no elements - {  }

The subset of A containing one element each - {1} {3} {5}

The subset of A containing two elements each - {1, 3} {1, 5} {3, 5}

The subset of A containing three elements - {1, 3, 5)

Therefore, all possible subsets of A are { }, {1}, {3}, {5}, {1, 3}, {1, 5}, {3, 5}, {1, 3, 5}

Therefore, number of all possible subsets of A is 8 which is equal 2\(^{3}\).

Proper subsets are = {  }, {1}, {3}, {5}, {1, 3}, {1, 5}, {3, 5}

Number of proper subsets are 7 = 8 - 1 = 2\(^{3}\) - 1


2. If the number of elements in a set is 2, find the number of subsets and proper subsets.

Solution:

Number of elements in a set = 2

Then, number of subsets = 2\(^{2}\) = 4

Also, the number of proper subsets = 2\(^{2}\) - 1

                                                    = 4 – 1 = 3


3. If A = {1, 2, 3, 4, 5}

then the number of proper subsets = 2\(^{5}\) - 1

                                                   = 32 - 1 = 31   {Take [2\(^{n}\) - 1]}

and power set of A = 2\(^{5}\) = 32 {Take [2\(^{n}\)]}

Set Theory

Sets

Objects Form a Set

Elements of a Set

Properties of Sets

Representation of a Set

Different Notations in Sets

Standard Sets of Numbers

Types of Sets

Pairs of Sets

Subset

Subsets of a Given Set

Operations on Sets

Union of Sets

Intersection of Sets

Difference of two Sets

Complement of a Set

Cardinal number of a set

Cardinal Properties of Sets

Venn Diagrams



7th Grade Math Problems

From Subsets of a given Set to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Relation between Diameter Radius and Circumference |Problems |Examples

    Apr 22, 24 05:19 PM

    Relation between Radius and Diameter of a Circle
    Relation between diameter radius and circumference are discussed here. Relation between Diameter and Radius: What is the relation between diameter and radius? Solution: Diameter of a circle is twice

    Read More

  2. Circle Math | Terms Related to the Circle | Symbol of Circle O | Math

    Apr 22, 24 01:35 PM

    Circle using a Compass
    In circle math the terms related to the circle are discussed here. A circle is such a closed curve whose every point is equidistant from a fixed point called its centre. The symbol of circle is O. We…

    Read More

  3. Preschool Math Activities | Colorful Preschool Worksheets | Lesson

    Apr 21, 24 10:57 AM

    Preschool Math Activities
    Preschool math activities are designed to help the preschoolers to recognize the numbers and the beginning of counting. We believe that young children learn through play and from engaging

    Read More

  4. Months of the Year | List of 12 Months of the Year |Jan, Feb, Mar, Apr

    Apr 20, 24 05:39 PM

    Months of the Year
    There are 12 months in a year. The months are January, February, march, April, May, June, July, August, September, October, November and December. The year begins with the January month. December is t…

    Read More

  5. What are Parallel Lines in Geometry? | Two Parallel Lines | Examples

    Apr 20, 24 05:29 PM

    Examples of Parallel Lines
    In parallel lines when two lines do not intersect each other at any point even if they are extended to infinity. What are parallel lines in geometry? Two lines which do not intersect each other

    Read More