Union of Sets

Definition of Union of Sets:

Union of two given sets is the smallest set which contains all the elements of both the sets.

To find the union of two given sets A and B is a set which consists of all the elements of A and all the elements of B such that no element is repeated.

The symbol for denoting union of sets is ‘’. 

For example;

Let set A = {2, 4, 5, 6}
and set B = {4, 6, 7, 8}

Taking every element of both the sets A and B, without repeating any element, we get a new set = {2, 4, 5, 6, 7, 8}

This new set contains all the elements of set A and all the elements of set B with no repetition of elements and is named as union of set A and B.

The symbol used for the union of two sets is ‘’.

Therefore, symbolically, we write union of the two sets A and B is A ∪ B which means A union B. 

Therefore, A ∪ B = {x : x ∈ A or x ∈ B} 


Solved examples to find union of two given sets:

1. If = {1, 3, 7, 5} and B = {3, 7, 8, 9}. Find union of two set A and B. 

Solution:

A ∪ B = {1, 3, 5, 7, 8, 9} 
No element is repeated in the union of two sets. The common elements 3, 7 are taken only once. 

2. Let X = {a, e, i, o, u} and Y = {ф}. Find union of two given sets X and Y. 

Solution:

X ∪ Y = {a, e, i, o, u} 

Therefore, union of any set with an empty set is the set itself. 


3. If set P = {2, 3, 4, 5, 6, 7}, set Q = {0, 3, 6, 9, 12} and set R = {2, 4, 6, 8}.

(i) Find the union of sets P and Q

(ii) Find the union of two set P and R

(iii) Find the union of the given sets Q and R

Solution:

(i) Union of sets P and Q is P ∪ Q

The smallest set which contains all the elements of set P and all the elements of set Q is {0, 2, 3, 4, 5, 6, 7, 9, 12}.

(ii) Union of two set P and R is P ∪ R

The smallest set which contains all the elements of set P and all the elements of set R is {2, 3, 4, 5, 6, 7, 8}.

(iii) Union of the given sets Q and R is Q ∪ R

The smallest set which contains all the elements of set Q and all the elements of set R is {0, 2, 3, 4, 6, 8, 9, 12}.


Notes:

A and B are the subsets of A ∪ B 

The union of sets is commutative, i.e., A ∪ B = B ∪ A. 

The operations are performed when the sets are expressed in roster form. 


Some properties of the operation of union:

(i) A∪B = B∪A                      (Commutative law) 

(ii) A∪(B∪C) = (A∪B)∪C         (Associative law) 

(iii) A ∪ ϕ = A                      (Law of identity element, is the identity of ) 
 
(iv) A∪A = A                        (Idempotent law) 

(v) U∪A = U                        (Law of ) ∪ is the universal set. 

Notes:

A ∪ ϕ = ϕ ∪ A = A i.e. union of any set with the empty set is always the set itself.

Set Theory

Sets

Objects Form a Set

Elements of a Set

Properties of Sets

Representation of a Set

Different Notations in Sets

Standard Sets of Numbers

Types of Sets

Pairs of Sets

Subset

Subsets of a Given Set

Operations on Sets

Intersection of Sets

Difference of two Sets

Complement of a Set

Cardinal number of a set

Cardinal Properties of Sets

Venn Diagrams



7th Grade Math Problems

From Definition of Union of Sets to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Method of H.C.F. |Highest Common Factor|Factorization &Division Method

    Apr 13, 24 05:12 PM

    HCF by Short Division Method
    We will discuss here about the method of h.c.f. (highest common factor). The highest common factor or HCF of two or more numbers is the greatest number which divides exactly the given numbers. Let us…

    Read More

  2. Factors | Understand the Factors of the Product | Concept of Factors

    Apr 13, 24 03:29 PM

    Factors
    Factors of a number are discussed here so that students can understand the factors of the product. What are factors? (i) If a dividend, when divided by a divisor, is divided completely

    Read More

  3. Methods of Prime Factorization | Division Method | Factor Tree Method

    Apr 13, 24 01:27 PM

    Factor Tree Method
    In prime factorization, we factorise the numbers into prime numbers, called prime factors. There are two methods of prime factorization: 1. Division Method 2. Factor Tree Method

    Read More

  4. Divisibility Rules | Divisibility Test|Divisibility Rules From 2 to 18

    Apr 13, 24 12:41 PM

    Divisibility Rules
    To find out factors of larger numbers quickly, we perform divisibility test. There are certain rules to check divisibility of numbers. Divisibility tests of a given number by any of the number 2, 3, 4…

    Read More

  5. Even and Odd Numbers Between 1 and 100 | Even and Odd Numbers|Examples

    Apr 12, 24 04:22 PM

    even and odd numbers
    All the even and odd numbers between 1 and 100 are discussed here. What are the even numbers from 1 to 100? The even numbers from 1 to 100 are:

    Read More