Square Root of a Perfect Square by using the Prime Factorization Method



To find the square root of a perfect square by using the prime factorization method when a given number is a perfect square:

Step I: Resolve the given number into prime factors.

Step II: Make pairs of similar factors.

Step III: Take the product of prime factors, choosing one factor out of every pair.



Examples on square root of a perfect square by using the prime factorization method:

1. Find the square root of 484 by prime factorization method.

Solution:

Resolving 484 as the product of primes, we get

484 = 2 × 2 × 11 × 11 

√484 = √(2 × 2 × 11 × 11

= 2 × 11

Therefore, √484 = 22



2. Find the square root of 324.

Solution:


The square root of 324 by prime factorization, we get


324 = 2 × 2 × 3 × 3 × 3 × 3

√324 = √(2 × 2 × 3 × 3 × 3 × 3)

= 2 × 3 × 3


Therefore, √324 = 18



3. Find out the square root of 1764.

Solution:


The square root of 1764 by prime factorization, we get

1764 = 2 x 2 x 3 x 3 x 7 x 7.

√1764 = √(2 x 2 x 3 x 3 x 7 x 7)

= 2 x 3 x 7




Therefore, √1764 = 42.



4. Evaluate √4356

Solution:


By using prime factorization, we get

4356 = 2 x 2 x 3 x 3 x 11 x 11

√4356 = √(2 x 2 x 3 x 3 x 11 x 11)

= 2 × 3 × 11




Therefore, √4356 = 66.



5. Evaluate √11025

Solution:


By using prime factorization, we get

11025 = 5 x 5 x 3 x 3 x 7 x 7.

√11025 = √(5 x 5 x 3 x 3 x 7 x 7)

= 5 × 3 × 7





Therefore, √11025 = 105

6. In an auditorium, the number of rows is equal to the number of chairs in each row. If the capacity of the auditorium is 2025, find the number of chairs in each row.

Solution:


Let the number of chairs in each row be x.

Then, the number of rows = x.

Total number of chairs in the auditorium = (x × x) = x²

But, the capacity of the auditorium = 2025 (given).

Therefore, x² = 2025

= 5 × 5 × 3 × 3 × 3 × 3

x = (5 × 3 × 3) = 45.






Hence, the number of chairs in each row = 45


7. Find the smallest number by which 396 must be multiplied so that the product becomes a perfect square.

Solution:


By prime factorization, we get

396 = 2 × 2 × 3 × 3 × 11

It is clear that in order to get a perfect square, one more 11 is required.

So, the given number should be multiplied by 11 to make the product a perfect square.




8. Find the smallest number by which 1100 must be divided so that the quotient is a perfect square.

Solution:


Expressing 1100 as the product of primes, we get

1100 = 2 × 2 × 5 × 5 × 11

Here, 2 and 5 occur in pairs and 11 does not.

Therefore, 1100 must be divided by 11 so that the quotient is 100

i.e., 1100 ÷ 11 = 100 and 100 is a perfect square.



9. Find the least square number divisible by each one of 8, 9and 10.

Solution:


The least number divisible by each one of 8, 9, 10 is their LCM.

Now, LCM of 8, 9, 10 = (2 × 4 × 9 × 5) = 360

By prime factorization, we get

360 = 2 × 2 × 2 × 3 × 3 × 5

To make it a perfect square it must be multiplied by (2 × 5) i.e., 10.





Hence, the required number = (360 × 10) = 3600.


 Square Root

Square Root

Square Root of a Perfect Square by using the Prime Factorization Method

Square Root of a Perfect Square by Using the Long Division Method

Square Root of Numbers in the Decimal Form

Square Root of Number in the Fraction Form

Square Root of Numbers that are Not Perfect Squares

Table of Square Roots

Practice Test on Square and Square Roots


● Square Root- Worksheets

Worksheet on Square Root using Prime Factorization Method

Worksheet on Square Root using Long Division Method

Worksheet on Square Root of Numbers in Decimal and Fraction Form











8th Grade Math Practice

From Square Root of a Perfect Square by using the Prime Factorization Method to HOME PAGE



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Adding 1-Digit Number | Understand the Concept one Digit Number

    Sep 18, 24 03:29 PM

    Add by Counting Forward
    Understand the concept of adding 1-digit number with the help of objects as well as numbers.

    Read More

  2. Addition of Numbers using Number Line | Addition Rules on Number Line

    Sep 18, 24 02:47 PM

    Addition Using the Number Line
    Addition of numbers using number line will help us to learn how a number line can be used for addition. Addition of numbers can be well understood with the help of the number line.

    Read More

  3. Counting Before, After and Between Numbers up to 10 | Number Counting

    Sep 17, 24 01:47 AM

    Before After Between
    Counting before, after and between numbers up to 10 improves the child’s counting skills.

    Read More

  4. Worksheet on Three-digit Numbers | Write the Missing Numbers | Pattern

    Sep 17, 24 12:10 AM

    Reading 3-digit Numbers
    Practice the questions given in worksheet on three-digit numbers. The questions are based on writing the missing number in the correct order, patterns, 3-digit number in words, number names in figures…

    Read More

  5. Arranging Numbers | Ascending Order | Descending Order |Compare Digits

    Sep 16, 24 11:24 PM

    Arranging Numbers
    We know, while arranging numbers from the smallest number to the largest number, then the numbers are arranged in ascending order. Vice-versa while arranging numbers from the largest number to the sma…

    Read More