Square Root of a Perfect Square by using the Prime Factorization Method



To find the square root of a perfect square by using the prime factorization method when a given number is a perfect square:

Step I: Resolve the given number into prime factors.

Step II: Make pairs of similar factors.

Step III: Take the product of prime factors, choosing one factor out of every pair.



Examples on square root of a perfect square by using the prime factorization method:

1. Find the square root of 484 by prime factorization method.

Solution:

Resolving 484 as the product of primes, we get

484 = 2 × 2 × 11 × 11 

√484 = √(2 × 2 × 11 × 11

= 2 × 11

Therefore, √484 = 22



2. Find the square root of 324.

Solution:


The square root of 324 by prime factorization, we get


324 = 2 × 2 × 3 × 3 × 3 × 3

√324 = √(2 × 2 × 3 × 3 × 3 × 3)

= 2 × 3 × 3


Therefore, √324 = 18



3. Find out the square root of 1764.

Solution:


The square root of 1764 by prime factorization, we get

1764 = 2 x 2 x 3 x 3 x 7 x 7.

√1764 = √(2 x 2 x 3 x 3 x 7 x 7)

= 2 x 3 x 7




Therefore, √1764 = 42.



4. Evaluate √4356

Solution:


By using prime factorization, we get

4356 = 2 x 2 x 3 x 3 x 11 x 11

√4356 = √(2 x 2 x 3 x 3 x 11 x 11)

= 2 × 3 × 11




Therefore, √4356 = 66.



5. Evaluate √11025

Solution:


By using prime factorization, we get

11025 = 5 x 5 x 3 x 3 x 7 x 7.

√11025 = √(5 x 5 x 3 x 3 x 7 x 7)

= 5 × 3 × 7





Therefore, √11025 = 105

6. In an auditorium, the number of rows is equal to the number of chairs in each row. If the capacity of the auditorium is 2025, find the number of chairs in each row.

Solution:


Let the number of chairs in each row be x.

Then, the number of rows = x.

Total number of chairs in the auditorium = (x × x) = x²

But, the capacity of the auditorium = 2025 (given).

Therefore, x² = 2025

= 5 × 5 × 3 × 3 × 3 × 3

x = (5 × 3 × 3) = 45.






Hence, the number of chairs in each row = 45


7. Find the smallest number by which 396 must be multiplied so that the product becomes a perfect square.

Solution:


By prime factorization, we get

396 = 2 × 2 × 3 × 3 × 11

It is clear that in order to get a perfect square, one more 11 is required.

So, the given number should be multiplied by 11 to make the product a perfect square.




8. Find the smallest number by which 1100 must be divided so that the quotient is a perfect square.

Solution:


Expressing 1100 as the product of primes, we get

1100 = 2 × 2 × 5 × 5 × 11

Here, 2 and 5 occur in pairs and 11 does not.

Therefore, 1100 must be divided by 11 so that the quotient is 100

i.e., 1100 ÷ 11 = 100 and 100 is a perfect square.



9. Find the least square number divisible by each one of 8, 9and 10.

Solution:


The least number divisible by each one of 8, 9, 10 is their LCM.

Now, LCM of 8, 9, 10 = (2 × 4 × 9 × 5) = 360

By prime factorization, we get

360 = 2 × 2 × 2 × 3 × 3 × 5

To make it a perfect square it must be multiplied by (2 × 5) i.e., 10.





Hence, the required number = (360 × 10) = 3600.


 Square Root

Square Root

Square Root of a Perfect Square by using the Prime Factorization Method

Square Root of a Perfect Square by Using the Long Division Method

Square Root of Numbers in the Decimal Form

Square Root of Number in the Fraction Form

Square Root of Numbers that are Not Perfect Squares

Table of Square Roots

Practice Test on Square and Square Roots


● Square Root- Worksheets

Worksheet on Square Root using Prime Factorization Method

Worksheet on Square Root using Long Division Method

Worksheet on Square Root of Numbers in Decimal and Fraction Form











8th Grade Math Practice

From Square Root of a Perfect Square by using the Prime Factorization Method to HOME PAGE



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Estimating Sum and Difference | Reasonable Estimate | Procedure | Math

    May 22, 24 06:21 PM

    The procedure of estimating sum and difference are in the following examples. Example 1: Estimate the sum 5290 + 17986 by estimating the numbers to their nearest (i) hundreds (ii) thousands.

    Read More

  2. Round off to Nearest 1000 |Rounding Numbers to Nearest Thousand| Rules

    May 22, 24 06:14 PM

    Round off to Nearest 1000
    While rounding off to the nearest thousand, if the digit in the hundreds place is between 0 – 4 i.e., < 5, then the hundreds place is replaced by ‘0’. If the digit in the hundreds place is = to or > 5…

    Read More

  3. Round off to Nearest 100 | Rounding Numbers To Nearest Hundred | Rules

    May 22, 24 05:17 PM

    Round off to Nearest 100
    While rounding off to the nearest hundred, if the digit in the tens place is between 0 – 4 i.e. < 5, then the tens place is replaced by ‘0’. If the digit in the units place is equal to or >5, then the…

    Read More

  4. Round off to Nearest 10 |How To Round off to Nearest 10?|Rounding Rule

    May 22, 24 03:49 PM

    Rounding to the Nearest 10
    Round off to nearest 10 is discussed here. Rounding can be done for every place-value of number. To round off a number to the nearest tens, we round off to the nearest multiple of ten. A large number…

    Read More

  5. Rounding Numbers | How do you Round Numbers?|Nearest Hundred, Thousand

    May 22, 24 02:33 PM

    rounding off numbers
    Rounding numbers is required when we deal with large numbers, for example, suppose the population of a district is 5834237, it is difficult to remember the seven digits and their order

    Read More