Square Root of Number in the Fraction Form


In square root of number in the fraction form, suppose the square root of a fraction \(\frac{x}{a}\) is that fraction \(\frac{y}{a}\) which when multiplied by itself gives the fraction \(\frac{x}{a}\).



If x and y are squares of some numbers then,

\(\sqrt{\frac{x}{y}} = \frac{\sqrt{x}}{\sqrt{y}}\)

If the fraction is expressed in a mixed form, convert it into improper fraction. 

Find the square root of numerator and denominator separately and write the answer in the fraction form.


Examples on square root of number in the fraction form are explained below;

1. Find the square root of \(\frac{625}{256}\)

Solution:


\(\sqrt{\frac{625}{256}} = \frac{\sqrt{625}}{\sqrt{256}}\)

Now, we find the square roots of 625 and 256 separately.








Thus, √625 = 25 and √256 = 16

\(\sqrt{\frac{625}{256}} = \frac{\sqrt{625}}{\sqrt{256}}\) = \(\frac{25}{26}\)




2. Evaluate: \(\sqrt{\frac{441}{961}}\).


Solution:

\(\sqrt{\frac{441}{961}} = \frac{\sqrt{441}}{\sqrt{961}}\)

Now, we find the square roots of 441 and 961 separately.







Thus, √441 = 21 and √961 = 31

⇒ \(\sqrt{\frac{441}{961}}\) = \(\frac{\sqrt{441}}{\sqrt{961}}\) = \(\frac{21}{31}\)




3. Find the values of \(\sqrt{\frac{7}{2}}\) up to 3 decimal places. 


Solution:


To make the denominator a perfect square, multiply the numerator and denominator by √2.

Therefore, \(\frac{\sqrt{7} \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}}\) = \(\frac{\sqrt{14}}{2}\)


Now, we find the square roots of 14 up to 3 places of decimal.










Thus, √14 = 3.741 up to 3 places of decimal.

                  = 3.74 correct up to 2 places of decimal.

Therefore, \(\frac{\sqrt{14}}{2}\) = \(\frac{3.74}{2}\) = 1.87. 



4. Find the square root of 1\(\frac{56}{169}\)

Solution: 

1\(\frac{56}{169}\) = \(\frac{225}{169}\)

Therefore, \(\sqrt{1\frac{56}{169}}\) = \(\sqrt{\frac{225}{169}} = \frac{\sqrt{225}}{\sqrt{169}}\)


We find the square roots of 225 and 169 separately








Therefore, √225 = 15 and √169 = 13

⇒ \(\sqrt{1\frac{56}{169}}\) = \(\sqrt{\frac{225}{169}} = \frac{\sqrt{225}}{\sqrt{169}}\) = \(\frac{15}{13}\) = 1\(\frac{2}{13}\)




5. Find the value of \(\frac{\sqrt{243}}{\sqrt{363}}\).

Solution: 

\(\frac{\sqrt{243}}{\sqrt{363}}\) = \(\sqrt{\frac{243}{363}}\)  = \(\sqrt{\frac{81}{121}} = \frac{\sqrt{81}}{\sqrt{121}}\) = \(\frac{9}{11}\) 




6. Find out the value of √45 × √20.

Solution:


√45 × √20 = √(45 × 20)

                   = √(3 × 3 × 5 × 2 × 2 × 5)

                   = √(3 × 3 × 2 × 2 × 5 × 5 )

                   = (3 × 2 × 5)

                   = 30.


 Square Root

Square Root

Square Root of a Perfect Square by using the Prime Factorization Method

Square Root of a Perfect Square by Using the Long Division Method

Square Root of Numbers in the Decimal Form

Square Root of Number in the Fraction Form

Square Root of Numbers that are Not Perfect Squares

Table of Square Roots

Practice Test on Square and Square Roots


● Square Root- Worksheets

Worksheet on Square Root using Prime Factorization Method

Worksheet on Square Root using Long Division Method

Worksheet on Square Root of Numbers in Decimal and Fraction Form












8th Grade Math Practice

From Square Root of Number in the Fraction Form to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Fraction as a Part of Collection | Pictures of Fraction | Fractional

    Feb 24, 24 04:33 PM

    Pictures of Fraction
    How to find fraction as a part of collection? Let there be 14 rectangles forming a box or rectangle. Thus, it can be said that there is a collection of 14 rectangles, 2 rectangles in each row. If it i…

    Read More

  2. Fraction of a Whole Numbers | Fractional Number |Examples with Picture

    Feb 24, 24 04:11 PM

    A Collection of Apples
    Fraction of a whole numbers are explained here with 4 following examples. There are three shapes: (a) circle-shape (b) rectangle-shape and (c) square-shape. Each one is divided into 4 equal parts. One…

    Read More

  3. Identification of the Parts of a Fraction | Fractional Numbers | Parts

    Feb 24, 24 04:10 PM

    Fractional Parts
    We will discuss here about the identification of the parts of a fraction. We know fraction means part of something. Fraction tells us, into how many parts a whole has been

    Read More

  4. Numerator and Denominator of a Fraction | Numerator of the Fraction

    Feb 24, 24 04:09 PM

    What are the numerator and denominator of a fraction? We have already learnt that a fraction is written with two numbers arranged one over the other and separated by a line.

    Read More

  5. Roman Numerals | System of Numbers | Symbol of Roman Numerals |Numbers

    Feb 24, 24 10:59 AM

    List of Roman Numerals Chart
    How to read and write roman numerals? Hundreds of year ago, the Romans had a system of numbers which had only seven symbols. Each symbol had a different value and there was no symbol for 0. The symbol…

    Read More