Solvability of Linear Simultaneous Equations

To understand the condition for solvability of linear simultaneous equations in two variables, if linear simultaneous equations in two variables have no solution, they are called inconsistent whereas if they have solution, they are called consistent.


In the method of cross-multiplication, for the simultaneous equations, 

a₁x + b₁y + c₁ = 0 --------- (i) 

a₂x + b₂y + c₂ = 0 --------- (ii) 

we get: x/(b₁ c₂ - b₂ c₁) = y/(a₂ c₁ - a₁ c₂) = 1/(a₁ b₂ - a₂ b₁)

that is, x = (b₁ c₂ - b₂ c₁)/(a₁ b₂ - a₂ b₁) , y = (a₂ c₁ - a₁ c₂)/(a₁ b₂ - a₂ b₁) --------- (iii) 

Now, let us see when the solvability of linear simultaneous equations in two variables (i), (ii) are solvable. 

(1) If (a₁ b₂ - a₂ b₁) ≠ 0 for any values of (b₁ c₂ - b₂ c₁) and (a₂ c₁ - a₁ c₂), we get unique solutions for x and y from equation (iii) 


For examples:

7x + y + 3 = 0 ------------ (i)

2x + 5y – 11 = 0 ------------ (ii)

Here, a₁ = 7, a₂ = 2, b₁ = 1, b₂ = 5, c₁ = 3, c₂ = -11

and (a₁ b₂ - a₂ b₁) = 33 ≠ 0 from equation (iii)

we get, x = -26/33 , y = 83/33

Therefore, (a₁ b₂ - a₂ b₁) ≠ 0, then the simultaneous equations (i), (ii) are always consistent.

(2) If (a₁ b₂ - a₂ b₁) = 0 and one of (b₁ c₂ - b₂ c₁) and (a₂ c₁ - a₁ c₂) is zero (in that case, the other one is also zero), we get,

a₁/a₂ = b₁/b₂ = c₁/c₂ = k (Let) where k ≠ 0

that is, a₁ = ka₂, b₁ = kb₂ and c₁ = kc₂ and changed forms of the simultaneous equations are

ka₂x + kb₂y + kc₂ = 0

a₂x + b₂y + c₂ = 0

But they are two different forms of the same equation; expressing x in terms of y, we get

x = - b₂y + c₂/a₂

Which indicates that for each definite value of y, there is a definite value of x, in other words, there are infinite number of solutions of the simultaneous equations in this case?




For examples:

  7x +   y + 3 = 0

14x + 2y + 6 = 0

Here, a₁/a₂ = b₁/b₂ = c₁/c₂ = 1/2

Actually, we get the second equation when the first equation is multiplied by 2. In fact, there is only one equation and expressing x in term of y, we get:

x = -(y + 3)/7

Some of the solutions in particular:

simultaneous equations in two variables, simultaneous equations


(3) If (a₁ b₂ - a₂ b₁) = 0 and one of (b₁ c₂ - b₂ c₁) and (a₂ c₁ - a₁ c₂) is non-zero (then the other one is also non-zero) we get,

(let) k = a₁/a₂ = b₁/b₂ ≠ c₁/c₂

That is, a₁ = ka₂ and b₁ = kb₂

In this case, the changed forms of simultaneous equations (i) and (ii) are

ka₂x + kb₂y + c₁ = 0 ………. (v)

a₂x + b₂y + c₂ = 0 ………. (vi)

and equation (iii) do not give any value of x and y. So the equations are inconsistent.

At the time of drawing graphs, we will notice that a linear equation in two variables always represents a straight line and the two equations of the forms (v) and (vi) represent two parallel straight lines. For that reason, they do not have any common point.

For examples:

7x + y + 3 = 0

14x + 2y - 1 = 0

Here, a₁ = 7, b₁ = 1, c₁ = 3 and a₂ = 14, b₂ = 2, c₂ = -1

and a₁/a₂ = b₁/b₂ ≠ c₁/c₂

So, the given simultaneous equations are inconsistent.

From the above discussion, we can arrive at the following conclusions that the solvability of linear simultaneous equations in two variables

a₁x + b₁y + c₁ = 0 and a₂x + b₂y + c₂ = 0 will be

(1) Consistent if a₁/a₂ ≠ b₁/b₂: in this case, we will get unique solution

(2) Inconsistent, that is, there will be no solution if

a₁/a₂ = b₁/b₂ ≠ c₁/c₂ where c₁ ≠ 0, c₂ ≠ 0

(3) Consistent having infinite solution if

a₁/a₂ = b₁/b₂ = c₁/c₂ where c₁ ≠ 0, c₂ ≠ 0


 Simultaneous Linear Equations

Simultaneous Linear Equations

Comparison Method

Elimination Method

Substitution Method

Cross-Multiplication Method

Solvability of Linear Simultaneous Equations

Pairs of Equations

Word Problems on Simultaneous Linear Equations

Word Problems on Simultaneous Linear Equations

Practice Test on Word Problems Involving Simultaneous Linear Equations


 Simultaneous Linear Equations - Worksheets

Worksheet on Simultaneous Linear Equations

Worksheet on Problems on Simultaneous Linear Equations









8th Grade Math Practice

From Solvability of Linear Simultaneous Equations to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Expanded form of Decimal Fractions |How to Write a Decimal in Expanded

    Jul 22, 24 03:27 PM

    Expanded form of Decimal
    Decimal numbers can be expressed in expanded form using the place-value chart. In expanded form of decimal fractions we will learn how to read and write the decimal numbers. Note: When a decimal is mi…

    Read More

  2. Worksheet on Decimal Numbers | Decimals Number Concepts | Answers

    Jul 22, 24 02:41 PM

    Worksheet on Decimal Numbers
    Practice different types of math questions given in the worksheet on decimal numbers, these math problems will help the students to review decimals number concepts.

    Read More

  3. Decimal Place Value Chart |Tenths Place |Hundredths Place |Thousandths

    Jul 21, 24 02:14 PM

    Decimal place value chart
    Decimal place value chart are discussed here: The first place after the decimal is got by dividing the number by 10; it is called the tenths place.

    Read More

  4. Thousandths Place in Decimals | Decimal Place Value | Decimal Numbers

    Jul 20, 24 03:45 PM

    Thousandths Place in Decimals
    When we write a decimal number with three places, we are representing the thousandths place. Each part in the given figure represents one-thousandth of the whole. It is written as 1/1000. In the decim…

    Read More

  5. Hundredths Place in Decimals | Decimal Place Value | Decimal Number

    Jul 20, 24 02:30 PM

    Hundredths Place in Decimals
    When we write a decimal number with two places, we are representing the hundredths place. Let us take plane sheet which represents one whole. Now, we divide the sheet into 100 equal parts. Each part r…

    Read More