Substitution Method

Observe the steps how to solve the system of linear equations by using the substitution method.


(i) Find the value of one variable in terms of the other from one of the given equations. 

(ii) Substitute the value of this variable in the other equation. 

(iii) Solve the equation and get the value of one of the variables. 

(iv) Substitute the value of this variable in any of the equation to get the value of other variable.

Follow the instructions along with the method of solution of the two simultaneous equations given below to find the value of x and y. 

7x – 3y = 31 --------- (i) 

9x – 5y = 41 --------- (ii) 


Step I:

From equation (i) 7x – 3y = 31, express y in terms of x 

From equation (i) 7x – 3y = 31, we get;

– 3y = 31 – 7x

or, 3y = 7x – 31

or, 3y/3 = (7x – 31)/3

Therefore, y = (7x – 31)/3 --------- (iii)


Step II:

Substitute the value of y obtained from equation (iii) (7x – 31)/3 in equation (ii) 9x – 5y = 41

Putting the value of y obtained from equation (iii) in equation (ii) we get;

9x – 5 × (7x – 31)/3 = 41 --------- (iv)


Step III:

Now, solve equation (iv) 9x – 5 × (7x – 31)/3 = 41

Simplifying equation (iv) 9x – 5 × (7x – 31)/3 = 41 we get;

(27x – 35x + 155)/3 = 41

or, 27x – 35x + 155 = 41 × 3

or, 27x – 35x + 155 = 123

or, –8x + 155 = 123

or, –8x + 155 – 155 = 123 – 155

or, –8x = –32

or, 8x/8 = 32/8

Therefore, x = 4


Step IV:

Putting the value of x in equation (iii) 

y = (7x – 31)/3, find the value of y

Putting x = 4 in equation (iii), we get;

y = (7 × 4 – 31)/3

or, y = (28 – 31)/3

or, y = –3/3

Therefore, y = –1


Step V:

Write down the required solution of the two simultaneous linear equations by using the substitution method

Therefore, x= 4 and y = –1

In this case, the general method obtained for solving simultaneous equations as follows:

1. To express y in terms of x from any one of the equations.

2. To substitute this value of y in the other equation.

3. One value of x will be obtained, by solving the equation in x thus obtained.

4. Substituting this value of x in any of the equations, we will get the corresponding value of y.

5. Solution of the two given simultaneous equations will be given by this pair of values of x and y.

6. Similarly expressing x in terms of y from an equation and substituting in the other, we can find the value of y. Putting this value of in any one of the equations, we can find the value of x and thus we can solve the two linear simultaneous equations.

As in this method of solution, we express one unknown quantity in terms of the other and substitute in an equation; o we call this method as ‘Method of Substitution’.

Keep these instructions in your mind and notice how the following simultaneous equations can be solved.


Worked-out examples on two variables linear equations by using the substitution method:

2/x + 3/y = 2 --------- (i)

5/x + 10/y = 5⁵/₆ --------- (ii)

From equation (i), we get:

3/y = 2 – 2/x

or, 3/y = (2x – 2)/x

or, y/3 = x/(2x – 2)

or, y = 3x/(2x – 2) --------- (iii)

Substituting 3x/(2x – 2) in place of y in equation (ii),

or, 5/x + 10 ÷ 3x/(2x – 2) = 35/6

or, 5/x + 10(2x – 2)/3x = 35/6

or, 1/x + 2(2x – 2)/3x = 7/6

or, (3 + 4x – 4)/3x = 7/6

or, (4x – 1)/3x = 7/6

or, (4x – 1)/x = 7/2

or, 8x – 2 = 7x

or, 8x – 2 + 2 = 7x + 2 or, 8x – 7x = 7x – 7x + 2

or, x = 2

Putting the value of x = 2 in equation (iii), 

or, y = 3 ∙ 2/2 ∙ 2 – 2

or, y = 6/4 – 2

or, y = 6/2

or, y = 3

Therefore, the required solution is x = 2 and y = 3.


 Simultaneous Linear Equations

Simultaneous Linear Equations

Comparison Method

Elimination Method

Substitution Method

Cross-Multiplication Method

Solvability of Linear Simultaneous Equations

Pairs of Equations

Word Problems on Simultaneous Linear Equations

Word Problems on Simultaneous Linear Equations

Practice Test on Word Problems Involving Simultaneous Linear Equations


 Simultaneous Linear Equations - Worksheets

Worksheet on Simultaneous Linear Equations

Worksheet on Problems on Simultaneous Linear Equations










8th Grade Math Practice

From Substitution Method to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Multiplication by Ten, Hundred and Thousand |Multiply by 10, 100 &1000

    May 01, 25 11:57 PM

    Multiply by 10
    To multiply a number by 10, 100, or 1000 we need to count the number of zeroes in the multiplier and write the same number of zeroes to the right of the multiplicand. Rules for the multiplication by 1…

    Read More

  2. Adding and Subtracting Large Decimals | Examples | Worksheet | Answers

    May 01, 25 03:01 PM

    Here we will learn adding and subtracting large decimals. We have already learnt how to add and subtract smaller decimals. Now we will consider some examples involving larger decimals.

    Read More

  3. Converting Fractions to Decimals | Solved Examples | Free Worksheet

    Apr 28, 25 01:43 AM

    Converting Fractions to Decimals
    In converting fractions to decimals, we know that decimals are fractions with denominators 10, 100, 1000 etc. In order to convert other fractions into decimals, we follow the following steps:

    Read More

  4. Expanded Form of a Number | Writing Numbers in Expanded Form | Values

    Apr 27, 25 10:13 AM

    Expanded Form of a Number
    We know that the number written as sum of the place-values of its digits is called the expanded form of a number. In expanded form of a number, the number is shown according to the place values of its…

    Read More

  5. Converting Decimals to Fractions | Solved Examples | Free Worksheet

    Apr 26, 25 04:56 PM

    Converting Decimals to Fractions
    In converting decimals to fractions, we know that a decimal can always be converted into a fraction by using the following steps: Step I: Obtain the decimal. Step II: Remove the decimal points from th…

    Read More