Elimination Method

Follow the steps to solve the system of linear equations by using the elimination method:

(i) Multiply the given equation by suitable constant so as to make the coefficients of the variable to be eliminated equal.

(ii) Add the new equations obtained if the terms having the same coefficient are opposite signs and subtract if they are of the same sign.

(iii) Solve the equation thus obtained.

(iv) Substitute the value found in any one the given equations.

(v) Solve it to get the value of the other variable.

Worked-out examples on elimination method:

1. Solve the system of equation 2x + y = -4 and 5x – 3y = 1 by the method of elimination.

Solution: 

The given equations are: 

2x + y = -4       …………… (i) 

5x – 3y = 1       …………… (ii) 

Multiply equation (i) by 3, we get; 

{2x + y = -4} …………… {× 3}

6x + 3y = -12       …………… (iii) 

Adding (ii) and (iii), we get; 

Elimination method

or, x = -11/11

or, x = -1

Substituting the value of x = -1 in equation (i), we get;

2 × (-1) + y = -4

-2 + y = -4

-2 + 2 + y = -4 + 2

y = -4 + 2

y = -2

Therefore, x = -1 and y = -2 is the solution of the system of equations 2x + y = -4 and 5x – 3y = 1



2. Solve the system of equation 2x + 3y = 11, x + 2y = 7 by the method of elimination.

Solution:

The given equations are:

2x + 3y = 11       …………… (i)

x + 2y = 7       …………… (ii)

Multiply the equation (ii) by 2, we get

{x + 2y = 7}       …………… (× 2)

2x + 4y = 14       …………… (iii)

Subtract equation (i) and (ii), we get

method of elimination

Substituting the value of y = 3 in equation (i), we get 

2x + 3y = 11 

or, 2x + 3 × 3 = 11

or, 2x + 9 = 11

or, 2x + 9 – 9 = 11 – 9

or, 2x = 11 – 9

or, 2x = 2 

or, x = 2/2 

or, x = 1

Therefore, x = 1 and y = 3 is the solution of the system of the given equations. 


3. Solve 2a – \(\frac{3}{b}\) = 12 and 5a + \(\frac{7}{b}\) = 1

Solution:

The given equations are:

2a – \(\frac{3}{b}\) = 12       …………… (i)

5a + \(\frac{7}{b}\) = 1        …………… (ii)

Put \(\frac{1}{b}\)  = c, we have

2a – 3c = 12       …………… (iii)

5a + 7c = 1         …………… (iv)

Multiply equation (iii) by 5 and (iv) by 2, we get

10a – 15c = 60       …………… (v)

10a + 14c = 2        …………… (vi)

Subtracting (v) and (vi), we get

Subtracting

or, c = \(\frac{58}{-29}\)

or, c = -2

But \(\frac{1}{b}\) = c

Therefore, \(\frac{1}{b}\) = -2 or b = -\(\frac{1}{2}\)

Subtracting the value of c in equation (v), we get

10a – 15 × (-2) = 60

or, 10a + 30 = 60

or, 10a + 30 - 30= 60 - 30

or, 10a = 60 – 30

or, a = \(\frac{30}{10}\)

or, a = 3

Therefore, a = 3 and b = - \(\frac{1}{2}\) is the solution of the given system of equations.



4. x/2 + 2/3 y = -1 and x – 1/3 y = 3

Solution:

The given equations are:

x/2 + 2/3 y = -1       …………… (i)

x – 1/3 y = 3       …………… (ii)

Multiply equation (i) by 6 and (ii) by 3, we get;

3x + 4y = -6       …………… (iii)

3x – y = 9       …………… (iv)

Solving (iii) and (iv), we get;

elimination

or, y = -15/5

or, y = -3

Subtracting the value of y in (ii), we get;

x - 1/3̶ × -3̶ = 3

or, x + 1 = 3

or, x = 3 – 1

or, x = 2

Therefore, x = 2 and y = -3 is the solution of the equation.

x/2 + 2/3 y = -1 and x - y/3 = 3

 Simultaneous Linear Equations

Simultaneous Linear Equations

Comparison Method

Elimination Method

Substitution Method

Cross-Multiplication Method

Solvability of Linear Simultaneous Equations

Pairs of Equations

Word Problems on Simultaneous Linear Equations

Word Problems on Simultaneous Linear Equations

Practice Test on Word Problems Involving Simultaneous Linear Equations


 Simultaneous Linear Equations - Worksheets

Worksheet on Simultaneous Linear Equations

Worksheet on Problems on Simultaneous Linear Equations






8th Grade Math Practice 

From Elimination Method to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Least Common Factor (LCM) | Factorization & Division Method

    Mar 25, 25 02:39 AM

    L.C.M. of 20, 30, 36 by Division Method
    We already familiar with the least common multiple which is the smallest common multiple of the numbers. The least (lowest) common multiple of two or more numbers is exactly divisible by each of the g…

    Read More

  2. 5th Grade Highest Common Factor | HCF | GCD|Prime Factorization Method

    Mar 24, 25 11:58 PM

    Find the H.C.F. of 12, 36, 48
    The highest common factor (H.C.F.) of two or more numbers is the highest or greatest common number or divisor which divides each given number exactly. Hence, it is also called Greatest Common Divisor…

    Read More

  3. 5th Grade Factors and Multiples | Definitions | Solved Examples | Math

    Mar 23, 25 02:39 PM

    Prime Factor of 312
    Here we will discuss how factors and multiples are related to each other in math. A factor of a number is a divisor which divides the dividend exactly. A factor of a number which is a prime number is…

    Read More

  4. Adding 2-Digit Numbers | Add Two Two-Digit Numbers without Carrying

    Mar 23, 25 12:43 PM

    Adding 2-Digit Numbers Using an Abacus
    Here we will learn adding 2-digit numbers without regrouping and start working with easy numbers to get acquainted with the addition of two numbers.

    Read More

  5. Worksheet on 12 Times Table | Printable Multiplication Table | Video

    Mar 23, 25 10:28 AM

    worksheet on multiplication of 12 times table
    Worksheet on 12 times table can be printed out. Homeschoolers can also use these multiplication table sheets to practice at home.

    Read More