Elimination Method

Follow the steps to solve the system of linear equations by using the elimination method:

(i) Multiply the given equation by suitable constant so as to make the coefficients of the variable to be eliminated equal.

(ii) Add the new equations obtained if the terms having the same coefficient are opposite signs and subtract if they are of the same sign.

(iii) Solve the equation thus obtained.

(iv) Substitute the value found in any one the given equations.

(v) Solve it to get the value of the other variable.

Worked-out examples on elimination method:

1. Solve the system of equation 2x + y = -4 and 5x – 3y = 1 by the method of elimination.

Solution: 

The given equations are: 

2x + y = -4       …………… (i) 

5x – 3y = 1       …………… (ii) 

Multiply equation (i) by 3, we get; 

{2x + y = -4} …………… {× 3}

6x + 3y = -12       …………… (iii) 

Adding (ii) and (iii), we get; 

Elimination method

or, x = -11/11

or, x = -1

Substituting the value of x = -1 in equation (i), we get;

2 × (-1) + y = -4

-2 + y = -4

-2 + 2 + y = -4 + 2

y = -4 + 2

y = -2

Therefore, x = -1 and y = -2 is the solution of the system of equations 2x + y = -4 and 5x – 3y = 1



2. Solve the system of equation 2x + 3y = 11, x + 2y = 7 by the method of elimination.

Solution:

The given equations are:

2x + 3y = 11       …………… (i)

x + 2y = 7       …………… (ii)

Multiply the equation (ii) by 2, we get

{x + 2y = 7}       …………… (× 2)

2x + 4y = 14       …………… (iii)

Subtract equation (i) and (ii), we get

method of elimination

Substituting the value of y = 3 in equation (i), we get 

2x + 3y = 11 

or, 2x + 3 × 3 = 11

or, 2x + 9 = 11

or, 2x + 9 – 9 = 11 – 9

or, 2x = 11 – 9

or, 2x = 2 

or, x = 2/2 

or, x = 1

Therefore, x = 1 and y = 3 is the solution of the system of the given equations. 


3. Solve 2a – 3b = 12 and 5a + 7b = 1

Solution:

The given equations are:

2a – 3b = 12       …………… (i)

5a + 7b = 1        …………… (ii)

Put 1b  = c, we have

2a – 3c = 12       …………… (iii)

5a + 7c = 1         …………… (iv)

Multiply equation (iii) by 5 and (iv) by 2, we get

10a – 15c = 60       …………… (v)

10a + 14c = 2        …………… (vi)

Subtracting (v) and (vi), we get

Subtracting

or, c = 5829

or, c = -2

But 1b = c

Therefore, 1b = -2 or b = -12

Subtracting the value of c in equation (v), we get

10a – 15 × (-2) = 60

or, 10a + 30 = 60

or, 10a + 30 - 30= 60 - 30

or, 10a = 60 – 30

or, a = 3010

or, a = 3

Therefore, a = 3 and b = - 12 is the solution of the given system of equations.



4. x/2 + 2/3 y = -1 and x – 1/3 y = 3

Solution:

The given equations are:

x/2 + 2/3 y = -1       …………… (i)

x – 1/3 y = 3       …………… (ii)

Multiply equation (i) by 6 and (ii) by 3, we get;

3x + 4y = -6       …………… (iii)

3x – y = 9       …………… (iv)

Solving (iii) and (iv), we get;

elimination

or, y = -15/5

or, y = -3

Subtracting the value of y in (ii), we get;

x - 1/3̶ × -3̶ = 3

or, x + 1 = 3

or, x = 3 – 1

or, x = 2

Therefore, x = 2 and y = -3 is the solution of the equation.

x/2 + 2/3 y = -1 and x - y/3 = 3

 Simultaneous Linear Equations

Simultaneous Linear Equations

Comparison Method

Elimination Method

Substitution Method

Cross-Multiplication Method

Solvability of Linear Simultaneous Equations

Pairs of Equations

Word Problems on Simultaneous Linear Equations

Word Problems on Simultaneous Linear Equations

Practice Test on Word Problems Involving Simultaneous Linear Equations


 Simultaneous Linear Equations - Worksheets

Worksheet on Simultaneous Linear Equations

Worksheet on Problems on Simultaneous Linear Equations






8th Grade Math Practice 

From Elimination Method to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Multiplication by Ten, Hundred and Thousand |Multiply by 10, 100 &1000

    May 01, 25 11:57 PM

    Multiply by 10
    To multiply a number by 10, 100, or 1000 we need to count the number of zeroes in the multiplier and write the same number of zeroes to the right of the multiplicand. Rules for the multiplication by 1…

    Read More

  2. Adding and Subtracting Large Decimals | Examples | Worksheet | Answers

    May 01, 25 03:01 PM

    Here we will learn adding and subtracting large decimals. We have already learnt how to add and subtract smaller decimals. Now we will consider some examples involving larger decimals.

    Read More

  3. Converting Fractions to Decimals | Solved Examples | Free Worksheet

    Apr 28, 25 01:43 AM

    Converting Fractions to Decimals
    In converting fractions to decimals, we know that decimals are fractions with denominators 10, 100, 1000 etc. In order to convert other fractions into decimals, we follow the following steps:

    Read More

  4. Expanded Form of a Number | Writing Numbers in Expanded Form | Values

    Apr 27, 25 10:13 AM

    Expanded Form of a Number
    We know that the number written as sum of the place-values of its digits is called the expanded form of a number. In expanded form of a number, the number is shown according to the place values of its…

    Read More

  5. Converting Decimals to Fractions | Solved Examples | Free Worksheet

    Apr 26, 25 04:56 PM

    Converting Decimals to Fractions
    In converting decimals to fractions, we know that a decimal can always be converted into a fraction by using the following steps: Step I: Obtain the decimal. Step II: Remove the decimal points from th…

    Read More