Elimination Method

Follow the steps to solve the system of linear equations by using the elimination method:

(i) Multiply the given equation by suitable constant so as to make the coefficients of the variable to be eliminated equal.

(ii) Add the new equations obtained if the terms having the same coefficient are opposite signs and subtract if they are of the same sign.

(iii) Solve the equation thus obtained.

(iv) Substitute the value found in any one the given equations.

(v) Solve it to get the value of the other variable.

Worked-out examples on elimination method:

1. Solve the system of equation 2x + y = -4 and 5x – 3y = 1 by the method of elimination.

Solution: 

The given equations are: 

2x + y = -4       …………… (i) 

5x – 3y = 1       …………… (ii) 

Multiply equation (i) by 3, we get; 

{2x + y = -4} …………… {× 3}

6x + 3y = -12       …………… (iii) 

Adding (ii) and (iii), we get; 

Elimination method

or, x = -11/11

or, x = -1

Substituting the value of x = -1 in equation (i), we get;

2 × (-1) + y = -4

-2 + y = -4

-2 + 2 + y = -4 + 2

y = -4 + 2

y = -2

Therefore, x = -1 and y = -2 is the solution of the system of equations 2x + y = -4 and 5x – 3y = 1



2. Solve the system of equation 2x + 3y = 11, x + 2y = 7 by the method of elimination.

Solution:

The given equations are:

2x + 3y = 11       …………… (i)

x + 2y = 7       …………… (ii)

Multiply the equation (ii) by 2, we get

{x + 2y = 7}       …………… (× 2)

2x + 4y = 14       …………… (iii)

Subtract equation (i) and (ii), we get

method of elimination

Substituting the value of y = 3 in equation (i), we get 

2x + 3y = 11 

or, 2x + 3 × 3 = 11

or, 2x + 9 = 11

or, 2x + 9 – 9 = 11 – 9

or, 2x = 11 – 9

or, 2x = 2 

or, x = 2/2 

or, x = 1

Therefore, x = 1 and y = 3 is the solution of the system of the given equations. 


3. Solve 2a – \(\frac{3}{b}\) = 12 and 5a + \(\frac{7}{b}\) = 1

Solution:

The given equations are:

2a – \(\frac{3}{b}\) = 12       …………… (i)

5a + \(\frac{7}{b}\) = 1        …………… (ii)

Put \(\frac{1}{b}\)  = c, we have

2a – 3c = 12       …………… (iii)

5a + 7c = 1         …………… (iv)

Multiply equation (iii) by 5 and (iv) by 2, we get

10a – 15c = 60       …………… (v)

10a + 14c = 2        …………… (vi)

Subtracting (v) and (vi), we get

Subtracting

or, c = \(\frac{58}{-29}\)

or, c = -2

But \(\frac{1}{b}\) = c

Therefore, \(\frac{1}{b}\) = -2 or b = -\(\frac{1}{2}\)

Subtracting the value of c in equation (v), we get

10a – 15 × (-2) = 60

or, 10a + 30 = 60

or, 10a + 30 - 30= 60 - 30

or, 10a = 60 – 30

or, a = \(\frac{30}{10}\)

or, a = 3

Therefore, a = 3 and b = - \(\frac{1}{2}\) is the solution of the given system of equations.



4. x/2 + 2/3 y = -1 and x – 1/3 y = 3

Solution:

The given equations are:

x/2 + 2/3 y = -1       …………… (i)

x – 1/3 y = 3       …………… (ii)

Multiply equation (i) by 6 and (ii) by 3, we get;

3x + 4y = -6       …………… (iii)

3x – y = 9       …………… (iv)

Solving (iii) and (iv), we get;

elimination

or, y = -15/5

or, y = -3

Subtracting the value of y in (ii), we get;

x - 1/3̶ × -3̶ = 3

or, x + 1 = 3

or, x = 3 – 1

or, x = 2

Therefore, x = 2 and y = -3 is the solution of the equation.

x/2 + 2/3 y = -1 and x - y/3 = 3

 Simultaneous Linear Equations

Simultaneous Linear Equations

Comparison Method

Elimination Method

Substitution Method

Cross-Multiplication Method

Solvability of Linear Simultaneous Equations

Pairs of Equations

Word Problems on Simultaneous Linear Equations

Word Problems on Simultaneous Linear Equations

Practice Test on Word Problems Involving Simultaneous Linear Equations


 Simultaneous Linear Equations - Worksheets

Worksheet on Simultaneous Linear Equations

Worksheet on Problems on Simultaneous Linear Equations






8th Grade Math Practice 

From Elimination Method to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Basic Division Facts | Division is the Inverse of Multiplication |Math

    Nov 03, 24 12:50 PM

    Basic Division Facts
    Some basic division facts are needed to follow for dividing numbers. The repeated subtraction of the same number is expressed by division in short form and in long form.

    Read More

  2. Division of Two-Digit by a One-Digit Numbers | Dividing Larger Numbers

    Oct 29, 24 01:27 PM

    Divide 2-Digit Number by 1-Digit Number
    In division of two-digit by a one-digit numbers are discussed here step by step. How to divide 2-digit numbers by single-digit numbers?

    Read More

  3. 2nd Grade Multiplication Worksheet | 2-Digit by 1-Digit | 3-Digit by 1

    Oct 29, 24 12:21 AM

    Times Table Crossword
    In worksheet on 2nd grade multiplication worksheet we will solve the problems on fact about multiplication, multiplication on number line, terms used in multiplication, multiplication of 1-digit numbe…

    Read More

  4. Multiplication and Division are Related | Multiplication Fact|Division

    Oct 29, 24 12:06 AM

    Division and Multiplication are Related
    Does multiplication and division are related? Yes, multiplication and division both are related to each other. A few examples are given are given below to show how they are related to each other.

    Read More

  5. Divide on a Number Line | Various Division Problems | Solved Examples

    Oct 28, 24 12:53 AM

    How to divide on a number line? Learn to divide using number line to find the quotient. Solved examples to show divide on a number line: 1. Solve 14 ÷ 7 Solution: 7 is subtracted repeatedly

    Read More