sin 3A in Terms of A

We will learn how to express the multiple angle of sin 3A in terms of A or sin 3A in terms of sin A.

Trigonometric function of sin 3A in terms of sin A is also known as one of the double angle formula.

If A is a number or angle then we have, sin 3A = 3 sin A - 4 sin^3 A.

Now we will proof the above multiple angle formula step-by-step.

Proof: sin 3A

= sin (2A + A)

= sin 2A cos A + cos 2A sin A

= 2 sin A cos A ∙ cos A + (1 - 2 sin^2 A) sin A

= 2 sin A (1 - sin^2 A) + sin A - 2 sin^3 A

= 2 sin A - 2 sin^3 A + sin A - 2 sin^3 A

3 sin A - 4 sin^3 A    

Therefore, sin 3A = 3 sin A - 4 sin^3 A           Proved

Note: (i) In the above formula we should note that the angle on the R.H.S. of the formula is one-third of the angle on L.H.S. Therefore, sin 60° = 3 sin 20° - 4 sin^3 20°.

(ii) To find the formula of sin 3A in terms of sin A we have used cos 2A = 1 - 2 sin^2 A

 

Now, we will apply the formula of multiple angle of sin 3A in terms of A or sin 3A in terms of sin A to solve the below problems.

1. Prove that sin A ∙ sin (60 - A) sin (60 + A) = ¼ sin 3A.

Solution:

L.H.S. = sin A ∙ sin (60° - A) sin (60° + A)

         = sin A (sin^2 60° - sin^2 A), [Since, sin (A + B) sin (A - B) = sin^2 A - sin^2 B]

         = sin A [(√3/2)^2 - sin^2 A), [Since we know that sin 60° = ½]

         = sin A (3/4 - sin^2 A)

         = ¼ sin A (3 - 4 sin^2 A)

         = ¼ (3 sin A - 4 sin^3 A)

         Now apply the formula of sin 3A in terms of A

         = ¼ sin 3A = R.H.S.    Proved

 

2. If cos θ = 12/13 find the value of sin 3θ.

Solution:

Given, cos A = 12/13    

We know that sin^2 A + cos^2 A = 1

⇒ sin^2 A = 1 - cos^2A

⇒ sin A = √(1 - cos^2A)

Therefore, sin A = √[1 - (12/13)^2]

           ⇒ sin A = √[1 - 144/169]

           ⇒ sin A = √(25/169)

           ⇒ sin A = 5/13

Now, sin 3A = 3 sin A - 4 sin^3 A

                 = 3 ∙ 5/13 - 4 ∙ (5/13)^3

                 = 15/13 - 500/2199  

                 =   (2535 - 500)/2199  

                 = 2035/2199


3. Show that, sin^3 A + sin^3 (120° + A) + sin^3 (240° + A) = - ¾ sin 3A.

Solution:

L.H.S = sin^3 A + sin^3 (120° + A) + sin^3 (240° + A)

         = ¼ [4 sin^3 A + 4 sin^3 (120° + A) + 4 sin^3 (240° + A)]

         = ¼ [3 sin A - sin 3A + 3 sin (120° + A) - sin 3 (120° + A) + 3 sin (240° + A) - sin 3 (240° + A)]

         [Since we know that, sin 3A = 3 sin 3A - 4 sin^3 A 

                                          ⇒ 4 sin^3 A = 3 sin A − sin 3A]

         = ¼ [3 {sin A + sin (120° + A) + sin (240° + A)} - {sin 3A + sin (360° + 3A) + sin (720° + 3A)}]

         = 1/4 [3 {sin A + 2 sin (180° + A) cos 60°) - (sin 3A + sin 3A + sin 3A)}

         = ¼ [3 {sin A + 2 ∙ (- sin A) ∙ 1/2} - 3 sin A]

         = ¼ [3 {sin A - sin A} - 3 sin A] 

         = - ¾ sin 3A = R.H.S.    Proved

 Multiple Angles






11 and 12 Grade Math

From sin 3A in Terms of A to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Mixed Addition and Subtraction | Questions on Addition

    Jan 12, 25 02:14 PM

    In worksheet on mixed addition and subtraction the questions involve both addition and subtraction together; all grade students can practice the questions on addition and subtraction together.

    Read More

  2. Estimating Sums and Differences | Estimations | Practical Calculations

    Jan 12, 25 02:02 PM

    Estimating Difference
    For estimating sums and differences in the number we use the rounded numbers for estimations to its nearest tens, hundred, and thousand. In many practical calculations, only an approximation is requir…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jan 12, 25 01:36 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Checking Subtraction using Addition |Use Addition to Check Subtraction

    Jan 12, 25 01:13 PM

    Checking Subtraction using Addition Worksheet
    We can check subtraction by adding the difference to the smaller number. Since the sum of difference and smaller number is equal to the larger number, subtraction is correct.

    Read More

  5. Worksheet on Subtraction of 4-Digit Numbers|Subtracting 4-Digit Number

    Jan 12, 25 09:04 AM

    Worksheet on Subtraction of 4-Digit Numbers
    Practice the questions given in the worksheet on subtraction of 4-digit numbers. Here we will subtract two 4-digit numbers (without borrowing and with borrowing) to find the difference between them.

    Read More