sin 3A in Terms of A

We will learn how to express the multiple angle of sin 3A in terms of A or sin 3A in terms of sin A.

Trigonometric function of sin 3A in terms of sin A is also known as one of the double angle formula.

If A is a number or angle then we have, sin 3A = 3 sin A - 4 sin^3 A.

Now we will proof the above multiple angle formula step-by-step.

Proof: sin 3A

= sin (2A + A)

= sin 2A cos A + cos 2A sin A

= 2 sin A cos A ∙ cos A + (1 - 2 sin^2 A) sin A

= 2 sin A (1 - sin^2 A) + sin A - 2 sin^3 A

= 2 sin A - 2 sin^3 A + sin A - 2 sin^3 A

3 sin A - 4 sin^3 A    

Therefore, sin 3A = 3 sin A - 4 sin^3 A           Proved

Note: (i) In the above formula we should note that the angle on the R.H.S. of the formula is one-third of the angle on L.H.S. Therefore, sin 60° = 3 sin 20° - 4 sin^3 20°.

(ii) To find the formula of sin 3A in terms of sin A we have used cos 2A = 1 - 2 sin^2 A

 

Now, we will apply the formula of multiple angle of sin 3A in terms of A or sin 3A in terms of sin A to solve the below problems.

1. Prove that sin A ∙ sin (60 - A) sin (60 + A) = ¼ sin 3A.

Solution:

L.H.S. = sin A ∙ sin (60° - A) sin (60° + A)

         = sin A (sin^2 60° - sin^2 A), [Since, sin (A + B) sin (A - B) = sin^2 A - sin^2 B]

         = sin A [(√3/2)^2 - sin^2 A), [Since we know that sin 60° = ½]

         = sin A (3/4 - sin^2 A)

         = ¼ sin A (3 - 4 sin^2 A)

         = ¼ (3 sin A - 4 sin^3 A)

         Now apply the formula of sin 3A in terms of A

         = ¼ sin 3A = R.H.S.    Proved

 

2. If cos θ = 12/13 find the value of sin 3θ.

Solution:

Given, cos A = 12/13    

We know that sin^2 A + cos^2 A = 1

⇒ sin^2 A = 1 - cos^2A

⇒ sin A = √(1 - cos^2A)

Therefore, sin A = √[1 - (12/13)^2]

           ⇒ sin A = √[1 - 144/169]

           ⇒ sin A = √(25/169)

           ⇒ sin A = 5/13

Now, sin 3A = 3 sin A - 4 sin^3 A

                 = 3 ∙ 5/13 - 4 ∙ (5/13)^3

                 = 15/13 - 500/2199  

                 =   (2535 - 500)/2199  

                 = 2035/2199


3. Show that, sin^3 A + sin^3 (120° + A) + sin^3 (240° + A) = - ¾ sin 3A.

Solution:

L.H.S = sin^3 A + sin^3 (120° + A) + sin^3 (240° + A)

         = ¼ [4 sin^3 A + 4 sin^3 (120° + A) + 4 sin^3 (240° + A)]

         = ¼ [3 sin A - sin 3A + 3 sin (120° + A) - sin 3 (120° + A) + 3 sin (240° + A) - sin 3 (240° + A)]

         [Since we know that, sin 3A = 3 sin 3A - 4 sin^3 A 

                                          ⇒ 4 sin^3 A = 3 sin A − sin 3A]

         = ¼ [3 {sin A + sin (120° + A) + sin (240° + A)} - {sin 3A + sin (360° + 3A) + sin (720° + 3A)}]

         = 1/4 [3 {sin A + 2 sin (180° + A) cos 60°) - (sin 3A + sin 3A + sin 3A)}

         = ¼ [3 {sin A + 2 ∙ (- sin A) ∙ 1/2} - 3 sin A]

         = ¼ [3 {sin A - sin A} - 3 sin A] 

         = - ¾ sin 3A = R.H.S.    Proved

 Multiple Angles






11 and 12 Grade Math

From sin 3A in Terms of A to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Multiplying Decimal by a Whole Number | Step-by-step Explanation|Video

    May 06, 25 12:01 AM

    Multiplying decimal by a whole number is just same like multiply as usual. How to multiply a decimal by a whole number? To multiply a decimal by a whole number follow the below steps

    Read More

  2. How to Divide Decimals? | Dividing Decimals by Decimals | Examples

    May 05, 25 02:58 AM

    Dividing a Decimal by a Whole Number
    Dividing Decimals by Decimals

    Read More

  3. Word Problems on Decimals | Decimal Word Problems | Decimal Home Work

    May 05, 25 01:27 AM

    Word problems on decimals are solved here step by step. The product of two numbers is 42.63. If one number is 2.1, find the other. Solution: Product of two numbers = 42.63 One number = 2.1

    Read More

  4. Worksheet on Multiplying Decimals | Product of the Two Decimal Numbers

    May 05, 25 01:05 AM

    Practice the math questions given in the worksheet on multiplying decimals. Multiply the decimals to find the product of the two decimal numbers, same like multiplying whole numbers.

    Read More

  5. Multiplication of a Decimal by 10, 100, 1000 | Multiplying decimals

    May 05, 25 12:23 AM

    Multiplication of a Decimal by 10, 100, 1000
    The working rule of multiplication of a decimal by 10, 100, 1000, etc... are: When the multiplier is 10, 100 or 1000, we move the decimal point to the right by as many places as number of zeroes after…

    Read More