sin 3A in Terms of A

We will learn how to express the multiple angle of sin 3A in terms of A or sin 3A in terms of sin A.

Trigonometric function of sin 3A in terms of sin A is also known as one of the double angle formula.

If A is a number or angle then we have, sin 3A = 3 sin A - 4 sin^3 A.

Now we will proof the above multiple angle formula step-by-step.

Proof: sin 3A

= sin (2A + A)

= sin 2A cos A + cos 2A sin A

= 2 sin A cos A ∙ cos A + (1 - 2 sin^2 A) sin A

= 2 sin A (1 - sin^2 A) + sin A - 2 sin^3 A

= 2 sin A - 2 sin^3 A + sin A - 2 sin^3 A

3 sin A - 4 sin^3 A    

Therefore, sin 3A = 3 sin A - 4 sin^3 A           Proved

Note: (i) In the above formula we should note that the angle on the R.H.S. of the formula is one-third of the angle on L.H.S. Therefore, sin 60° = 3 sin 20° - 4 sin^3 20°.

(ii) To find the formula of sin 3A in terms of sin A we have used cos 2A = 1 - 2 sin^2 A

 

Now, we will apply the formula of multiple angle of sin 3A in terms of A or sin 3A in terms of sin A to solve the below problems.

1. Prove that sin A ∙ sin (60 - A) sin (60 + A) = ¼ sin 3A.

Solution:

L.H.S. = sin A ∙ sin (60° - A) sin (60° + A)

         = sin A (sin^2 60° - sin^2 A), [Since, sin (A + B) sin (A - B) = sin^2 A - sin^2 B]

         = sin A [(√3/2)^2 - sin^2 A), [Since we know that sin 60° = ½]

         = sin A (3/4 - sin^2 A)

         = ¼ sin A (3 - 4 sin^2 A)

         = ¼ (3 sin A - 4 sin^3 A)

         Now apply the formula of sin 3A in terms of A

         = ¼ sin 3A = R.H.S.    Proved

 

2. If cos θ = 12/13 find the value of sin 3θ.

Solution:

Given, cos A = 12/13    

We know that sin^2 A + cos^2 A = 1

⇒ sin^2 A = 1 - cos^2A

⇒ sin A = √(1 - cos^2A)

Therefore, sin A = √[1 - (12/13)^2]

           ⇒ sin A = √[1 - 144/169]

           ⇒ sin A = √(25/169)

           ⇒ sin A = 5/13

Now, sin 3A = 3 sin A - 4 sin^3 A

                 = 3 ∙ 5/13 - 4 ∙ (5/13)^3

                 = 15/13 - 500/2199  

                 =   (2535 - 500)/2199  

                 = 2035/2199


3. Show that, sin^3 A + sin^3 (120° + A) + sin^3 (240° + A) = - ¾ sin 3A.

Solution:

L.H.S = sin^3 A + sin^3 (120° + A) + sin^3 (240° + A)

         = ¼ [4 sin^3 A + 4 sin^3 (120° + A) + 4 sin^3 (240° + A)]

         = ¼ [3 sin A - sin 3A + 3 sin (120° + A) - sin 3 (120° + A) + 3 sin (240° + A) - sin 3 (240° + A)]

         [Since we know that, sin 3A = 3 sin 3A - 4 sin^3 A 

                                          ⇒ 4 sin^3 A = 3 sin A − sin 3A]

         = ¼ [3 {sin A + sin (120° + A) + sin (240° + A)} - {sin 3A + sin (360° + 3A) + sin (720° + 3A)}]

         = 1/4 [3 {sin A + 2 sin (180° + A) cos 60°) - (sin 3A + sin 3A + sin 3A)}

         = ¼ [3 {sin A + 2 ∙ (- sin A) ∙ 1/2} - 3 sin A]

         = ¼ [3 {sin A - sin A} - 3 sin A] 

         = - ¾ sin 3A = R.H.S.    Proved

 Multiple Angles






11 and 12 Grade Math

From sin 3A in Terms of A to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Construction of Bar Graphs | Examples on Construction of Column Graph

    Jul 30, 25 03:20 PM

    What is Bar Graph?
    Now we will discuss about the construction of bar graphs or column graph. In brief let us recall about, what is bar graph? Bar graph is the simplest way to represent a data. In consists of rectangular…

    Read More

  2. Successor and Predecessor | Successor of a Whole Number | Predecessor

    Jul 29, 25 12:59 AM

    Successor and Predecessor
    The number that comes just before a number is called the predecessor. So, the predecessor of a given number is 1 less than the given number. Successor of a given number is 1 more than the given number…

    Read More

  3. Worksheet on Area, Perimeter and Volume | Square, Rectangle, Cube,Cubo

    Jul 28, 25 01:52 PM

    Volume of a Cuboids
    In this worksheet on area perimeter and volume you will get different types of questions on find the perimeter of a rectangle, find the perimeter of a square, find the area of a rectangle, find the ar…

    Read More

  4. Worksheet on Volume of a Cube and Cuboid |The Volume of a RectangleBox

    Jul 25, 25 03:15 AM

    Volume of a Cube and Cuboid
    We will practice the questions given in the worksheet on volume of a cube and cuboid. We know the volume of an object is the amount of space occupied by the object.1. Fill in the blanks:

    Read More

  5. Volume of a Cuboid | Volume of Cuboid Formula | How to Find the Volume

    Jul 24, 25 03:46 PM

    Volume of Cuboid
    Cuboid is a solid box whose every surface is a rectangle of same area or different areas. A cuboid will have a length, breadth and height. Hence we can conclude that volume is 3 dimensional. To measur…

    Read More