sin 3A in Terms of A

We will learn how to express the multiple angle of sin 3A in terms of A or sin 3A in terms of sin A.

Trigonometric function of sin 3A in terms of sin A is also known as one of the double angle formula.

If A is a number or angle then we have, sin 3A = 3 sin A - 4 sin^3 A.

Now we will proof the above multiple angle formula step-by-step.

Proof: sin 3A

= sin (2A + A)

= sin 2A cos A + cos 2A sin A

= 2 sin A cos A ∙ cos A + (1 - 2 sin^2 A) sin A

= 2 sin A (1 - sin^2 A) + sin A - 2 sin^3 A

= 2 sin A - 2 sin^3 A + sin A - 2 sin^3 A

3 sin A - 4 sin^3 A    

Therefore, sin 3A = 3 sin A - 4 sin^3 A           Proved

Note: (i) In the above formula we should note that the angle on the R.H.S. of the formula is one-third of the angle on L.H.S. Therefore, sin 60° = 3 sin 20° - 4 sin^3 20°.

(ii) To find the formula of sin 3A in terms of sin A we have used cos 2A = 1 - 2 sin^2 A

 

Now, we will apply the formula of multiple angle of sin 3A in terms of A or sin 3A in terms of sin A to solve the below problems.

1. Prove that sin A ∙ sin (60 - A) sin (60 + A) = ¼ sin 3A.

Solution:

L.H.S. = sin A ∙ sin (60° - A) sin (60° + A)

         = sin A (sin^2 60° - sin^2 A), [Since, sin (A + B) sin (A - B) = sin^2 A - sin^2 B]

         = sin A [(√3/2)^2 - sin^2 A), [Since we know that sin 60° = ½]

         = sin A (3/4 - sin^2 A)

         = ¼ sin A (3 - 4 sin^2 A)

         = ¼ (3 sin A - 4 sin^3 A)

         Now apply the formula of sin 3A in terms of A

         = ¼ sin 3A = R.H.S.    Proved

 

2. If cos θ = 12/13 find the value of sin 3θ.

Solution:

Given, cos A = 12/13    

We know that sin^2 A + cos^2 A = 1

⇒ sin^2 A = 1 - cos^2A

⇒ sin A = √(1 - cos^2A)

Therefore, sin A = √[1 - (12/13)^2]

           ⇒ sin A = √[1 - 144/169]

           ⇒ sin A = √(25/169)

           ⇒ sin A = 5/13

Now, sin 3A = 3 sin A - 4 sin^3 A

                 = 3 ∙ 5/13 - 4 ∙ (5/13)^3

                 = 15/13 - 500/2199  

                 =   (2535 - 500)/2199  

                 = 2035/2199


3. Show that, sin^3 A + sin^3 (120° + A) + sin^3 (240° + A) = - ¾ sin 3A.

Solution:

L.H.S = sin^3 A + sin^3 (120° + A) + sin^3 (240° + A)

         = ¼ [4 sin^3 A + 4 sin^3 (120° + A) + 4 sin^3 (240° + A)]

         = ¼ [3 sin A - sin 3A + 3 sin (120° + A) - sin 3 (120° + A) + 3 sin (240° + A) - sin 3 (240° + A)]

         [Since we know that, sin 3A = 3 sin 3A - 4 sin^3 A 

                                          ⇒ 4 sin^3 A = 3 sin A − sin 3A]

         = ¼ [3 {sin A + sin (120° + A) + sin (240° + A)} - {sin 3A + sin (360° + 3A) + sin (720° + 3A)}]

         = 1/4 [3 {sin A + 2 sin (180° + A) cos 60°) - (sin 3A + sin 3A + sin 3A)}

         = ¼ [3 {sin A + 2 ∙ (- sin A) ∙ 1/2} - 3 sin A]

         = ¼ [3 {sin A - sin A} - 3 sin A] 

         = - ¾ sin 3A = R.H.S.    Proved

 Multiple Angles






11 and 12 Grade Math

From sin 3A in Terms of A to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. 2nd Grade Place Value | Definition | Explanation | Examples |Worksheet

    Sep 14, 24 04:31 PM

    2nd Grade Place Value
    The value of a digit in a given number depends on its place or position in the number. This value is called its place value.

    Read More

  2. Three Digit Numbers | What is Spike Abacus? | Abacus for Kids|3 Digits

    Sep 14, 24 03:39 PM

    2 digit numbers table
    Three digit numbers are from 100 to 999. We know that there are nine one-digit numbers, i.e., 1, 2, 3, 4, 5, 6, 7, 8 and 9. There are 90 two digit numbers i.e., from 10 to 99. One digit numbers are ma

    Read More

  3. Worksheet on Three-digit Numbers | Write the Missing Numbers | Pattern

    Sep 14, 24 02:12 PM

    Reading 3-digit Numbers
    Practice the questions given in worksheet on three-digit numbers. The questions are based on writing the missing number in the correct order, patterns, 3-digit number in words, number names in figures…

    Read More

  4. Comparison of Three-digit Numbers | Arrange 3-digit Numbers |Questions

    Sep 13, 24 02:48 AM

    What are the rules for the comparison of three-digit numbers? (i) The numbers having less than three digits are always smaller than the numbers having three digits as:

    Read More

  5. Comparison of Two-digit Numbers | Arrange 2-digit Numbers | Examples

    Sep 12, 24 03:07 PM

     Compare 39 and 36
    What are the rules for the comparison of two-digit numbers? We know that a two-digit number is always greater than a single digit number. But, when both the numbers are two-digit numbers

    Read More