cos 2A in Terms of A

We will learn to express trigonometric function of cos 2A in terms of A. We know if A is a given angle then 2A is known as multiple angles.

How to proof the formula of cos 2A is equals cos\(^{2}\) A - sin\(^{2}\) A?

                                                      Or

How to proof the formula of cos 2A is equals 1 - 2 sin\(^{2}\) A?

                                                      Or

How to proof the formula of cos 2A is equals 2 cos\(^{2}\) A - 1?

We know that for two real numbers or angles A and B,

cos (A + B) = cos A cos B - sin A sin B

Now, putting B = A on both sides of the above formula we get,

cos (A + A) = cos A cos A - sin A sin A

cos 2A = cos\(^{2}\) A - sin\(^{2}\) A

⇒ cos 2A = cos\(^{2}\) A - (1 - cos\(^{2}\) A), [since we know that sin\(^{2}\) θ = 1 - cos\(^{2}\) θ]

⇒ cos 2A = cos\(^{2}\) A - 1 + cos\(^{2}\) A,

cos 2A = 2 cos\(^{2}\) A - 1

⇒ cos 2A = 2 (1 - sin\(^{2}\) A) - 1, [since we know that cos\(^{2}\) θ = 1 - sin\(^{2}\) θ]

⇒ cos 2A = 2 - 2 sin\(^{2}\) A - 1

cos 2A = 1 - 2 sin\(^{2}\) A

Note:  

(i) From cos 2A = 2 cos\(^{2}\) A - 1 we get, 2 cos\(^{2}\) A = 1 + cos 2A

and from cos 2A = 1 - 2 sin\(^{2}\) A we get,  2 sin\(^{2}\)A = 1 - cos 2A

(ii) In the above formula we should note that the angle on the R.H.S. is half of the angle on L.H.S. Therefore, cos 120° = cos\(^{2}\) 60° - sin\(^{2}\) 60°.

(iii) The above formulae is also known as double angle formulae for cos 2A.

 

Now, we will apply the formula of multiple angle of cos 2A in terms of A to solve the below problems.

1. Express cos 4A in terms of sin 2A and cos 2A

Solution:

cos 4A

= cos (2 ∙ 2A)

= cos\(^{2}\) (2A) - sin\(^{2}\) (2A)


2. Express cos 4β in terms of sin 2β

Solution:

cos 4β

= cos (2 ∙ 2β)

= 1 - 2 sin\(^{2}\) (2β)


3. Express cos 4θ in terms of cos 2θ

Solution:

cos 4θ

= cos 2 ∙ 2θ

= 2 cos\(^{2}\) (2θ) – 1


4. Express cos 4A in term of cos A.

Solution:

cos 4A = cos (2 ∙ 2A) = 2 cos\(^{2}\) (2A) - 1

⇒ cos 4A = 2(2 cos 2A - 1)\(^{2}\) - 1

⇒ cos 4A = 2(4 cos\(^{4}\) A - 4 cos\(^{2}\) A + 1) - 1

⇒ cos 4A =  8 cos\(^{4}\) A – 8 cos\(^{2}\) A + 1


More solved examples on cos 2A in terms of A.

5. If sin A = \(\frac{3}{5}\) find the values of cos 2A.

Solution:

Given, sin A = \(\frac{3}{5}\)

   cos 2A

= 1 - 2 sin\(^{2}\) A

= 1 - 2 (\(\frac{3}{5}\))\(^{2}\)

= 1 - 2 (\(\frac{9}{25}\))

= 1 - \(\frac{18}{25}\)

= \(\frac{25 - 18}{25}\)

= \(\frac{7}{25}\)


6. Prove that cos 4x = 1 - sin\(^{2}\) x cos\(^{2}\) x

Solution:

L.H.S. = cos 4x

= cos (2 × 2x)

= 1 - 2 sin\(^{2}\) 2x, [Since, cos 2A = 1 - 2 sin\(^{2}\) A]

= 1 - 2 (2 sin x cos x)\(^{2}\)

= 1 - 2 (4 sin\(^{2}\) x cos\(^{2}\) x)

= 1 - 8 sin\(^{2}\) x cos\(^{2}\) x = R.H.S.           Proved

 Multiple Angles








11 and 12 Grade Math

From cos 2A in Terms of A  to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

    Dec 13, 24 08:43 AM

    Complete the Series Patterns
    We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…

    Read More

  2. Patterns in Math | Missing Number | Counting Numbers | Worksheets

    Dec 13, 24 12:31 AM

    Finding patterns in math is very important to understand the sequence in the series. We need to find the exact missing number that from the group of numbers. The counting numbers may be counting

    Read More

  3. Concept of Pattern | Similar Patterns in Mathematics | Similar Pattern

    Dec 12, 24 11:22 PM

    Patterns in Necklace
    Concept of pattern will help us to learn the basic number patterns and table patterns. Animals such as all cows, all lions, all dogs and all other animals have dissimilar features. All mangoes have si…

    Read More

  4. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 12, 24 10:31 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  5. Types of Lines |Straight Lines|Curved Lines|Horizontal Lines| Vertical

    Dec 09, 24 10:39 PM

    Types of Lines
    What are the different types of lines? There are two different kinds of lines. (i) Straight line and (ii) Curved line. There are three different types of straight lines. (i) Horizontal lines, (ii) Ver…

    Read More