# Multiple Angle Formulae

The important trigonometrical ratios of multiple angle formulae are given below:

(i) sin 2A = 2 sin A cos  A

(ii) cos 2A = cos$$^{2}$$ A - sin$$^{2}$$ A

(iii) cos 2A = 2 cos$$^{2}$$ A - 1

(iv) cos 2A = 1 - 2 sin$$^{2}$$ A

(v) 1 + cos 2A = 2 cos$$^{2}$$ A

(vi) 1 - cos 2A = 2 sin$$^{2}$$ A

(vii) tan$$^{2}$$ A = $$\frac{1 - cos 2A}{1 + cos 2A}$$

(viii) sin 2A = $$\frac{2 tan A}{1 + tan^{2} A}$$

(ix) cos 2A = $$\frac{1 - tan^{2} A}{1 + tan^{2} A}$$

(x) tan 2A = $$\frac{2 tan A}{1 - tan^{2} A}$$

(xi) sin 3A = 3 sin A - 4 sin$$^{3}$$ A

(xii) cos 3A = 4 cos$$^{3}$$ A - 3 cos A

(xiii) tan 3A = $$\frac{3 tan A - tan^{3} A}{1 - 3 tan^{2} A}$$

Now we will learn how to use the above formulae for solving different types of trigonometric problems on multiple angles.

1. Prove that cos 5x = 16 cos$$^{5}$$ x – 20 cos$$^{3}$$ x + 5 cos x

Solution:

L.H.S. = cos 5x

= cos (2x + 3x)

= cos 2x cos 3x - sin 2x sin 3x

= (2 cos$$^{2}$$ x - 1) (4 cos$$^{3}$$ x - 3 cos x) - 2 sin x cos x (3 sin x - 4 sin$$^{3}$$ x)

= 8 cos$$^{5}$$ x - 10 cos$$^{3}$$ x + 3 cos x - 6 cos x sin$$^{2}$$ x + 8 cos x sin$$^{4}$$ x

= 8 cos$$^{5}$$ x - 10 cos$$^{3}$$ x + 3 cos x - 6 cos x (1 - cos$$^{2}$$ x) + 8 cos x (1 - cos$$^{2}$$ x)$$^{2}$$

= 8 cos$$^{5}$$ x - 10 cos$$^{3}$$ x + 3 cos x - 6 cos x + 6 cos$$^{3}$$ x + 8 cos x - 16 cos$$^{3}$$ x + 8 cos$$^{5}$$ x

= 16 cos$$^{5}$$ x - 20 cos$$^{3}$$ x + 5 cos x

2. If 13x = π, proved that cos x cos 2x cos 3x cos 4x cos 5x cos 6x = ½^6

Solution:

L. H. S = cos x cos 2x cos 3x cos 4x cos 5x cos 6x

= $$\frac{1}{2 sin x}$$ (2 sin x cos x) cos 2x cos 3x cos 4x cos 5x  cos 6x

= $$\frac{1}{2 sin x}$$ sin 2x cos 2x cos 3x cos 4x cos 5x cos 6x

= $$\frac{1}{2^2 sin x}$$ (2 sin 2x cos 2x) cos 3x cos 4x cos 5x cos 6x

= $$\frac{1}{2^3 sin x}$$ (2 sin 4x cos 4x) cos 3x cos 5x cos 6x

= $$\frac{1}{2^3 sin x}$$ sin 8x cos 3x cos 5x cos 6x

= $$\frac{1}{2^4 sin x}$$ (2 sin 5x cos 5x) cos 3x cos 6x,

[Since, sin 8x = sin (13x - 5x) = sin (π - 5x), (given 13x = π)

= sin 5x]

= $$\frac{1}{2^4 sin x}$$ sin 10x cos 3x cos 6x

= $$\frac{1}{2^5 sin x}$$ (2 sin 3x cos 3x) cos 6x,

[Since, sin 10x = sin (13x – 3x) = sin (π – 3x), (given 13x = π)

= sin 3x]

= $$\frac{1}{2^6 sin x}$$ 2 sin 3x cos 6x

= $$\frac{1}{2^6 sin x}$$ sin 12x

= $$\frac{1}{2^6 sin x}$$ sin (13x - x)

= $$\frac{1}{2^6 sin x}$$ sin (π - x), [Since, 13x = π]

= $$\frac{1}{2^6 sin x}$$ sin x

= $$\frac{1}{2^6}$$ = R.H.S.                         Proved

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

## Recent Articles

1. ### Roman Numerals | System of Numbers | Symbol of Roman Numerals |Numbers

Feb 22, 24 04:21 PM

How to read and write roman numerals? Hundreds of year ago, the Romans had a system of numbers which had only seven symbols. Each symbol had a different value and there was no symbol for 0. The symbol…

2. ### Worksheet on Roman Numerals |Roman Numerals|Symbols for Roman Numerals

Feb 22, 24 04:15 PM

Practice the worksheet on roman numerals or numbers. This sheet will encourage the students to practice about the symbols for roman numerals and their values. Write the number for the following: (a) V…

3. ### Roman Symbols | What are Roman Numbers? | Roman Numeration System

Feb 22, 24 02:30 PM

Do we know from where Roman symbols came? In Rome, people wanted to use their own symbols to express various numbers. These symbols, used by Romans, are known as Roman symbols, Romans used only seven…

4. ### Place Value | Place, Place Value and Face Value | Grouping the Digits

Feb 19, 24 11:57 PM

The place value of a digit in a number is the value it holds to be at the place in the number. We know about the place value and face value of a digit and we will learn about it in details. We know th…