# Multiple Angle Formulae

The important trigonometrical ratios of multiple angle formulae are given below:

(i) sin 2A = 2 sin A cos  A

(ii) cos 2A = cos$$^{2}$$ A - sin$$^{2}$$ A

(iii) cos 2A = 2 cos$$^{2}$$ A - 1

(iv) cos 2A = 1 - 2 sin$$^{2}$$ A

(v) 1 + cos 2A = 2 cos$$^{2}$$ A

(vi) 1 - cos 2A = 2 sin$$^{2}$$ A

(vii) tan$$^{2}$$ A = $$\frac{1 - cos 2A}{1 + cos 2A}$$

(viii) sin 2A = $$\frac{2 tan A}{1 + tan^{2} A}$$

(ix) cos 2A = $$\frac{1 - tan^{2} A}{1 + tan^{2} A}$$

(x) tan 2A = $$\frac{2 tan A}{1 - tan^{2} A}$$

(xi) sin 3A = 3 sin A - 4 sin$$^{3}$$ A

(xii) cos 3A = 4 cos$$^{3}$$ A - 3 cos A

(xiii) tan 3A = $$\frac{3 tan A - tan^{3} A}{1 - 3 tan^{2} A}$$

Now we will learn how to use the above formulae for solving different types of trigonometric problems on multiple angles.

1. Prove that cos 5x = 16 cos$$^{5}$$ x – 20 cos$$^{3}$$ x + 5 cos x

Solution:

L.H.S. = cos 5x

= cos (2x + 3x)

= cos 2x cos 3x - sin 2x sin 3x

= (2 cos$$^{2}$$ x - 1) (4 cos$$^{3}$$ x - 3 cos x) - 2 sin x cos x (3 sin x - 4 sin$$^{3}$$ x)

= 8 cos$$^{5}$$ x - 10 cos$$^{3}$$ x + 3 cos x - 6 cos x sin$$^{2}$$ x + 8 cos x sin$$^{4}$$ x

= 8 cos$$^{5}$$ x - 10 cos$$^{3}$$ x + 3 cos x - 6 cos x (1 - cos$$^{2}$$ x) + 8 cos x (1 - cos$$^{2}$$ x)$$^{2}$$

= 8 cos$$^{5}$$ x - 10 cos$$^{3}$$ x + 3 cos x - 6 cos x + 6 cos$$^{3}$$ x + 8 cos x - 16 cos$$^{3}$$ x + 8 cos$$^{5}$$ x

= 16 cos$$^{5}$$ x - 20 cos$$^{3}$$ x + 5 cos x

2. If 13x = π, proved that cos x cos 2x cos 3x cos 4x cos 5x cos 6x = ½^6

Solution:

L. H. S = cos x cos 2x cos 3x cos 4x cos 5x cos 6x

= $$\frac{1}{2 sin x}$$ (2 sin x cos x) cos 2x cos 3x cos 4x cos 5x  cos 6x

= $$\frac{1}{2 sin x}$$ sin 2x cos 2x cos 3x cos 4x cos 5x cos 6x

= $$\frac{1}{2^2 sin x}$$ (2 sin 2x cos 2x) cos 3x cos 4x cos 5x cos 6x

= $$\frac{1}{2^3 sin x}$$ (2 sin 4x cos 4x) cos 3x cos 5x cos 6x

= $$\frac{1}{2^3 sin x}$$ sin 8x cos 3x cos 5x cos 6x

= $$\frac{1}{2^4 sin x}$$ (2 sin 5x cos 5x) cos 3x cos 6x,

[Since, sin 8x = sin (13x - 5x) = sin (π - 5x), (given 13x = π)

= sin 5x]

= $$\frac{1}{2^4 sin x}$$ sin 10x cos 3x cos 6x

= $$\frac{1}{2^5 sin x}$$ (2 sin 3x cos 3x) cos 6x,

[Since, sin 10x = sin (13x – 3x) = sin (π – 3x), (given 13x = π)

= sin 3x]

= $$\frac{1}{2^6 sin x}$$ 2 sin 3x cos 6x

= $$\frac{1}{2^6 sin x}$$ sin 12x

= $$\frac{1}{2^6 sin x}$$ sin (13x - x)

= $$\frac{1}{2^6 sin x}$$ sin (π - x), [Since, 13x = π]

= $$\frac{1}{2^6 sin x}$$ sin x

= $$\frac{1}{2^6}$$ = R.H.S.                         Proved

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

## Recent Articles

1. ### Types of Fractions |Proper Fraction |Improper Fraction |Mixed Fraction

Jul 12, 24 03:08 PM

The three types of fractions are : Proper fraction, Improper fraction, Mixed fraction, Proper fraction: Fractions whose numerators are less than the denominators are called proper fractions. (Numerato…

2. ### Worksheet on Fractions | Questions on Fractions | Representation | Ans

Jul 12, 24 02:11 PM

In worksheet on fractions, all grade students can practice the questions on fractions on a whole number and also on representation of a fraction. This exercise sheet on fractions can be practiced

3. ### Fraction in Lowest Terms |Reducing Fractions|Fraction in Simplest Form

Jul 12, 24 03:21 AM

There are two methods to reduce a given fraction to its simplest form, viz., H.C.F. Method and Prime Factorization Method. If numerator and denominator of a fraction have no common factor other than 1…

4. ### Conversion of Improper Fractions into Mixed Fractions |Solved Examples

Jul 12, 24 12:59 AM

To convert an improper fraction into a mixed number, divide the numerator of the given improper fraction by its denominator. The quotient will represent the whole number and the remainder so obtained…