cos 3A in Terms of A

We will learn how to express the multiple angle of cos 3A in terms of A or cos 3A in terms of cos A.

Trigonometric function of cos 3A in terms of cos A is also known as one of the double angle formula.

If A is a number or angle then we have, cos 3A = 4 cos^3 A - 3 cos A

Now we will proof the above multiple angle formula step-by-step.

Proof: cos 3A

= cos (2A + A)

= cos 2A cos A - sin 2A sin A

= (2 cos^2 A - 1) cos A - 2 sin A cos A ∙ sin A

= 2 cos^3 A - cos A - 2 cos A (1 - cos^2 A)

= 2 cos^3 A - cos A - 2 cos A + 2 cos^3 A

= 4 cos^3 A - 3 cos A

Therefore,  cos 3A = 4 cos^3 A - 3 cos A             Proved

Note:  (i) In the above formula we should note that the angle on the R.H.S. of the formula is one-third of the angle on L.H.S. Therefore, cos 120° = 4 cos^3 40° - 3 cos 40°.

(ii) To find the formula of cos 3A in terms of A or cos 3A in terms of cos A we have use cos 2A = 2cos^2 A - 1.


Now, we will apply the formula of multiple angle of cos 3A in terms of A or cos 3A in terms of cos A to solve the below problems.

1. Prove that: cos 6A = 32 cos^6 A - 48 cos^4 A + 18 cos^2 A - 1

Solution:

L.H.S. = cos 6A

         = 2 cos^2 3A - 1, [Since we know that, cos 2θ = 2 cos^2 θ - 1]

         = 2(4 cos^3 A - 3 cos A)^2 - 1

         = 2 (16 cos^ 6 A + 9 cos^2 A - 24 cos^2 A) - 1

         = 32 cos^6 A – 48 cos^4 A + 18 cos^2 A - 1 = R.H.S.

 

2. Show that, 32 sin^6 θ = 10 - 15 cos 2θ + 6 cos 4θ - cos 6θ

Solution:               

L.H.S = 32 sin^6 θ

         = 4 ∙ (2 sin^2 θ)^3

         = 4 (1 - cos 2θ)^3

         = 4 [1 - 3 cos 2θ + 3 ∙ cos^2 2θ - cos^3 2θ]

         = 4 - 12 cos^2 θ + 12 cos^2 2θ - 4 cos^3 2θ

         = 4 - 12 cos 2θ + 6 ∙ 2 cos^2 2θ   - [cos 3 ∙ (2θ) + 3 cos 2θ]

         [Since, cos 3A = 4 cos^3 A - 3 cos A

         Therefore, 4 cos^3 A = cos 3A + 3 cos A]

⇒ 4 cos^3 2θ = cos 3 ∙ (2θ) + 3 cos 2θ, (replacing A by 2θ)

                   = 4 - 12 cos 2θ + 6 (1 + cos 4θ) - cos 6θ - 3 cos 2θ

                   = 10 - 15 cos 2θ + 6 cos 4θ - cos 6θ = R.H.S.                 Proved

 

3. Prove that: cos A cos (60 - A) cos (60 + A) = ¼ cos 3A

Solution:

L.H.S. = cos A ∙ cos (60 - A) cos (60 + A)

         = cos A ∙ (cos^2 60 - sin^2 A), [Since we know that cos (A + B) cos (A - B)          = cos ^2 A - sin ^2 B]

         = cos A (¼ - sin^2 A)

         = cos A (¼ - (1 - cos^2 A))

         = cos A (-3/4 + cos ^2 A)

         = ¼ cos A (-3 + 4 cos^2 A)

         = ¼(4 cos^3A - 3 cos A)

         = ¼ cos 3A = R.H.S.                        Proved

 Multiple Angles






11 and 12 Grade Math

From cos 3A in Terms of A to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Fundamental Geometrical Concepts | Point | Line | Properties of Lines

    Apr 18, 24 02:58 AM

    Point P
    The fundamental geometrical concepts depend on three basic concepts — point, line and plane. The terms cannot be precisely defined. However, the meanings of these terms are explained through examples.

    Read More

  2. What is a Polygon? | Simple Closed Curve | Triangle | Quadrilateral

    Apr 18, 24 02:15 AM

    What is a polygon? A simple closed curve made of three or more line-segments is called a polygon. A polygon has at least three line-segments.

    Read More

  3. Simple Closed Curves | Types of Closed Curves | Collection of Curves

    Apr 18, 24 01:36 AM

    Closed Curves Examples
    In simple closed curves the shapes are closed by line-segments or by a curved line. Triangle, quadrilateral, circle, etc., are examples of closed curves.

    Read More

  4. Tangrams Math | Traditional Chinese Geometrical Puzzle | Triangles

    Apr 18, 24 12:31 AM

    Tangrams
    Tangram is a traditional Chinese geometrical puzzle with 7 pieces (1 parallelogram, 1 square and 5 triangles) that can be arranged to match any particular design. In the given figure, it consists of o…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Apr 17, 24 01:32 PM

    Duration of Time
    We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton every evening. Yesterday, their game started at 5 : 15 p.m.

    Read More