We will learn how to express the multiple angle of cos 3A in terms of A or cos 3A in terms of cos A.
Trigonometric function of cos 3A in terms of cos A is also known as one of the double angle formula.
If A is a number or angle then we have, cos 3A = 4 cos^3 A - 3 cos A
Now we will proof the above multiple angle formula step-by-step.
Proof: cos 3A
= cos (2A + A)
= cos 2A cos A - sin 2A sin A
= (2 cos^2 A - 1) cos A - 2 sin A cos A ∙ sin A
= 2 cos^3 A - cos A - 2 cos A (1 - cos^2 A)
= 2 cos^3 A - cos A - 2 cos A + 2 cos^3 A
= 4 cos^3 A - 3 cos A
Therefore, cos 3A = 4 cos^3 A - 3 cos A Proved
Note: (i) In
the above formula we should note that the angle on the R.H.S. of the
formula is one-third of the angle on L.H.S. Therefore, cos 120° = 4 cos^3 40° - 3 cos 40°.
(ii) To find the formula of cos 3A in terms of A or cos 3A in terms of cos A we have use cos 2A = 2cos^2 A - 1.
Now, we will apply the formula of multiple angle of cos 3A in terms of A or cos 3A in terms of cos A to solve the below problems.
1. Prove that: cos 6A = 32 cos^6 A - 48 cos^4 A + 18 cos^2 A - 1
Solution:
L.H.S. = cos 6A
= 2 cos^2 3A - 1, [Since we know that, cos 2θ = 2 cos^2 θ - 1]
= 2(4 cos^3 A - 3 cos A)^2 - 1
= 2 (16 cos^ 6 A + 9 cos^2 A - 24 cos^2 A) - 1
= 32 cos^6 A – 48 cos^4 A + 18 cos^2 A - 1 = R.H.S.
2. Show that, 32 sin^6 θ = 10 - 15 cos 2θ + 6 cos 4θ - cos 6θ
Solution:
L.H.S = 32 sin^6 θ
= 4 ∙ (2 sin^2 θ)^3
= 4 (1 - cos 2θ)^3
= 4 [1 - 3 cos 2θ + 3 ∙ cos^2 2θ - cos^3 2θ]
= 4 - 12 cos^2 θ + 12 cos^2 2θ - 4 cos^3 2θ
= 4 - 12 cos 2θ + 6 ∙ 2 cos^2 2θ - [cos 3 ∙ (2θ) + 3 cos 2θ]
[Since, cos 3A = 4 cos^3 A - 3 cos A
Therefore, 4 cos^3 A = cos 3A + 3 cos A]
⇒ 4 cos^3 2θ = cos 3 ∙ (2θ) + 3 cos 2θ, (replacing A by 2θ)
= 4 - 12 cos 2θ + 6 (1 + cos 4θ) - cos 6θ - 3 cos 2θ
= 10 - 15 cos 2θ + 6 cos 4θ - cos 6θ = R.H.S. Proved
3. Prove that: cos A cos (60 - A) cos (60 + A) = ¼ cos 3A
Solution:
L.H.S. = cos A ∙ cos (60 - A) cos (60 + A)
= cos A ∙ (cos^2 60 - sin^2 A), [Since we know that cos (A + B) cos (A - B) = cos ^2 A - sin ^2 B]
= cos A (¼ - sin^2 A)
= cos A (¼ - (1 - cos^2 A))
= cos A (-3/4 + cos ^2 A)
= ¼ cos A (-3 + 4 cos^2 A)
= ¼(4 cos^3A - 3 cos A)
= ¼ cos 3A = R.H.S. Proved
11 and 12 Grade Math
From cos 3A in Terms of A to HOME PAGE
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.
Nov 03, 24 12:50 PM
Oct 29, 24 01:27 PM
Oct 29, 24 12:21 AM
Oct 29, 24 12:06 AM
Oct 28, 24 12:53 AM
New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.